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Lecture - 30 

Linearity Property and Shifting Properties of Fourier Transform 

 

In the last lecture, we have studied how to find out the Fourier transform or Fourier cosine 

transform or Fourier sine transform of a particular function. And also in the last lecture, 

we have seen that if the Fourier transform or Fourier cosine transform or Fourier sine 

transform of a function is the function itself, then we call the function as a self reciprocal 

function with respect to that transformation. We have also proved that Fourier transform 

of an even function is equal to its Fourier cosine transform. 
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Let us find the Fourier transform of 𝑓(𝑥) where 𝑓(𝑥) is defined as 

𝑓(𝑥) = {
1   ,   |𝑥| < 𝑎
0   ,   |𝑥| ≥ 𝑎

 

 Here 𝑎 is a positive real number and using this, we will show that 

∫
sin 𝑡

𝑡
𝑑𝑡 =

𝜋

2

∞

0
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𝑓(𝑥) can be written as, 

𝑓(𝑥) = {
1   , −𝑎 < 𝑥 < 𝑎
0   ,             otherwise

 

So, from the definition of Fourier transform, we have, 

ℱ[𝑓(𝑥)] = 𝐹(𝛼) =
1

√2𝜋
∫ 𝑓(𝑥)𝑒𝑖𝛼𝑥𝑑𝑥

∞

−∞

 

=
1

√2𝜋
∫ 1 ⋅ 𝑒𝑖𝛼𝑥 𝑑𝑥

𝑎

−𝑎

 

=
1

√2𝜋
[
𝑒𝑖𝑎𝛼 − 𝑒−𝑖𝑎𝛼

𝑖𝛼
] 

= √
2

𝜋
 
sin 𝑎𝛼

𝛼
 



 (Refer Slide Time: 04:39) 

 

Now if we take the inverse Fourier transform of 𝐹(𝛼), we will obtain, 

𝑓(𝑥) =
1

√2𝜋
∫ 𝐹(𝛼) 𝑒−𝑖𝛼𝑥𝑑𝛼

∞

−∞

 

Now already we know what is 𝐹(𝛼). So if we substitute 𝐹(𝛼), we will obtain, 

𝑓(𝑥) =
1

𝜋
∫ (

sin 𝑎𝛼

𝛼
) (cos 𝛼𝑥 − 𝑖 sin 𝛼𝑥)𝑑𝛼

∞

−∞

 

If we break it into two parts, we will obtain, 

𝑓(𝑥) =
1

𝜋
∫ (

sin 𝑎𝛼

𝛼
) cos 𝛼𝑥 𝑑𝛼

∞

−∞

−
𝑖

𝜋
∫ (

sin 𝑎𝛼

𝛼
) sin 𝛼𝑥 𝑑𝛼

∞

−∞

 

Now,  
sin 𝑎𝛼  cos 𝛼𝑥

𝛼
  is an even function of 𝛼 whereas  

sin 𝑎𝛼  sin 𝛼𝑥

𝛼
  is an odd function of 𝛼. 

So, above integral reduces to, 

       𝑓(𝑥) =
2

𝜋
∫ (

sin 𝑎𝛼

𝛼
) cos 𝛼𝑥 𝑑𝛼

∞

0

 

⇒ ∫ (
sin 𝑎𝛼

𝛼
) cos 𝛼𝑥 𝑑𝛼

∞

0

=
𝜋

2
𝑓(𝑥) 

= {

𝜋

2
   , −𝑎 < 𝑥 < 𝑎

0   ,             otherwise
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. 

Now, if we put 𝑥 = 0, then we get, 

∫
sin 𝑎𝛼

𝛼
𝑑𝛼

∞

0

=
𝜋

2
      (∵ 𝑓(0) = 1) 

Let us substitute 𝑡 = 𝑎𝛼 in the above integral. Then 𝑑𝛼 =
𝑑𝑡

𝑎
. Also, 𝑡 → 0 as 𝛼 →

0 and 𝑡 → ∞ as 𝛼 → ∞. 

∴ ∫
sin 𝑡

𝑡
𝑑𝑡

∞

0

=
𝜋

2
 

This completes the solution to the given problem. 
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Let us now discuss certain properties of Fourier transform. 

Fourier transform, Fourier sine transform and Fourier cosine transform all are linear, i.e., 

ℱ[𝑎𝑓(𝑥) + 𝑏𝑔(𝑥)] = 𝑎ℱ[𝑓(𝑥)] + 𝑏ℱ[𝑔(𝑥)] 

ℱ𝑠[𝑎𝑓(𝑥) + 𝑏𝑔(𝑥)] = 𝑎ℱ𝑠[𝑓(𝑥)] + 𝑏ℱ𝑠[𝑔(𝑥)] 

ℱ𝑐[𝑎𝑓(𝑥) + 𝑏𝑔(𝑥)] = 𝑎ℱ𝑐[𝑓(𝑥)] + 𝑏ℱ𝑐[𝑔(𝑥)] 

where 𝑎, 𝑏 are real numbers. 
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Let us see the first proof. By definition, we have, 

ℱ[𝑎𝑓(𝑥) + 𝑏𝑔(𝑥)] =
1

√2𝜋
∫ [𝑎𝑓(𝑥) + 𝑏𝑔(𝑥)]𝑒𝑖𝛼𝑥𝑑𝑥

∞

−∞

 

If we break it into two parts, then we have, 

ℱ[𝑎𝑓(𝑥) + 𝑏𝑔(𝑥)] =
𝑎

√2𝜋
∫ 𝑓(𝑥)𝑒𝑖𝛼𝑥𝑑𝑥

∞

−∞

+
𝑏

√2𝜋
∫ 𝑔(𝑥)𝑒𝑖𝛼𝑥𝑑𝑥

∞

−∞

 

= 𝑎ℱ[𝑓(𝑥)] + 𝑏ℱ[𝑔(𝑥)] 

Therefore, Fourier transform is linear. Similarly, we can show that, Fourier sine transform 

and Fourier cosine transform are also linear. 
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Now we discuss about the Shifting theorem for Fourier transform. The theorem states that, 

if ℱ[𝑓(𝑥)] = 𝐹(𝛼) then ℱ[𝑓(𝑥 − 𝑎)] = 𝑒𝑖𝑎𝛼𝐹(𝛼) where 𝑎 is a constant. 



(Refer Slide Time: 19:27) 

 

From the definition, 

ℱ[𝑓(𝑥 − 𝑎)] =
1

√2𝜋
∫ 𝑓(𝑥 − 𝑎)𝑒𝑖𝛼𝑥𝑑𝑥

∞

−∞

 

If we put 𝑥 − 𝑎 = 𝑡 in the right side of the above equation, then we have 

ℱ[𝑓(𝑥 − 𝑎)] =
1

√2𝜋
∫ 𝑓(𝑡)𝑒𝑖𝛼(𝑎+𝑡)𝑑𝑡

∞

−∞

 

=
1

√2𝜋
𝑒𝑖𝑎𝛼 ∫ 𝑓(𝑡)𝑒𝑖𝛼𝑡𝑑𝑡

∞

−∞

 

= 𝑒𝑖𝑎𝛼𝐹(𝛼)  

So, this completes the proof of shifting theorem. 
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Now we show that, ℱ[𝑒𝑖𝑎𝑥𝑓(𝑥)] = 𝐹(𝛼 + 𝑎) 
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From definition, 

ℱ[𝑒𝑖𝑎𝑥𝑓(𝑥)] =
1

√2𝜋
∫ 𝑒𝑖𝑎𝑥𝑓(𝑥)𝑒𝑖𝛼𝑥𝑑𝑥

∞

−∞

 

=
1

√2𝜋
∫ 𝑓(𝑥)𝑒𝑖(𝑎+𝛼)𝑥𝑑𝑥

∞

−∞

 

= 𝐹(𝛼 + 𝑎) 
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If 𝑎 is a non-zero real number, then from the Change of Scale property, we have, 

(𝑖)  ℱ[𝑓(𝑎𝑥)] =
1

|𝑎|
𝐹 (

𝛼

𝑎
) 

(𝑖𝑖)  ℱ𝑠[𝑓(𝑎𝑥)] =
1

𝑎
𝐹𝑠 (

𝛼

𝑎
)    ,   𝑎 > 0 

(𝑖𝑖𝑖)  ℱ𝑐[𝑓(𝑎𝑥)] =
1

𝑎
𝐹𝑐 (

𝛼

𝑎
)    ,   𝑎 > 0 
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. 



For 𝑎 > 0, we have, 

ℱ[𝑓(𝑎𝑥)] =
1

√2𝜋
∫ 𝑓(𝑎𝑥)𝑒𝑖𝛼𝑥𝑑𝑥

∞

−∞

                                            (1) 

If we put 𝑎𝑥 = 𝑡 in the right side of (1), then we have, 

ℱ[𝑓(𝑎𝑥)] =
1

√2𝜋
∫ 𝑓(𝑡)𝑒

𝑖𝛼𝑡
𝑎  

𝑑𝑡

𝑎
 

∞

−∞

=
1

𝑎
𝐹 (

𝛼

𝑎
) 
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For 𝑎 < 0, we have, if we put 𝑎𝑥 = 𝑡 in the right side of (1), then 𝑡 → ∞  as  𝑥 → −∞ and 

𝑡 → −∞  as  𝑥 → ∞. Therefore, 

ℱ[𝑓(𝑎𝑥)] =
1

√2𝜋
∫ 𝑓(𝑡)𝑒

𝑖𝛼𝑡
𝑎  

𝑑𝑡

𝑎
 

−∞

∞

 

= − 
1

√2𝜋
∫ 𝑓(𝑡)𝑒

𝑖𝛼𝑡
𝑎  

𝑑𝑡

𝑎
 

∞

−∞

 

= −
1

𝑎
𝐹 (

𝛼

𝑎
) 

Therefore, ℱ[𝑓(𝑎𝑥)] =
1

|𝑎|
𝐹 (

𝛼

𝑎
). 

Similarly (𝑖𝑖) and (𝑖𝑖𝑖) can be proved. 
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Thank you. 


