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Lecture - 03
Shifting properties of Laplace Transform

Welcome back. Now, we are going to revise the Laplace transform of various functions in

tabular form.
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F(t) | L{F(t)}
1
1 i 5>0
R n!

t (HEN) E 5>0
et — 5>0
s-a
sin at - s>0

s’Jgaz !
cos at — ,s>0
s’ta2
sinh at pop 5> |a|
hat — 5> 2
cos ik |a|

At a glance, let us see some functions and their corresponding Laplace transforms, like:

Laplace transform of 1 is % where s > 0.

n!
snt+1’

Laplace transform of t™, where n is positive integer is
. 1
Laplace transform of et is -

. a
Laplace transform of sin at equals —.
s?2+a?

s
s2+q?’

Laplace transform of cos at is

. - a
Laplace transform of sinh at is ——, where s > |a|.
se—a



And the Laplace transform of cosh at is equal to % where s > |a].
se—a

Now, let us see more examples to find out the Laplace transform of some complex
functions, using these basic results already obtained.

The first example is we want to find out the Laplace transform of sin ¢ cos t.
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Example
Find L{sin t cost}

Solution:
: e
L{sintcost} = L{E sin 2t}

1
= EL{sin 2t} (Using linear property)
12
T 25244
=
T 5244

,5>0

A ]




So, obviously in terms of trigonometric functions, we can write down

} 1,
sintcost = > sin 2t. Therefore

1 1
L{sintcost} =L {E sin Zt} = EL{sin 2t}

a
s2+a?’

Now, we know L{sin at} =

2

Clearly, here we have a = 2. So, L{sin 2t} = 2.4 Where s > 0.
1 2
~ L{sint cost } = 25714
_ 1 >0
Ts2t4 O
0, 0<t<1
Let us take the next example, F(t) =4t , 1<t <2
0, t>2

We need to evaluate L{F (t)}.
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Example

0,0<t<1
Find the Laplace transformation of F(t) where F(t) = {t, 1<t<2

0,t>2
Solution:

LF()} = [o " () dt
1 2 o0 1
=]De F(t)dt+/}e F(r)dt+f2 e HF(1)

1 2 ]
=/e"‘-0dt+[ e"'ta‘t+/ e ™. 0dt
J0 41 42
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So, by the definition of Laplace transform, we have,
LEF(D} = [, e St F(t)dt.

Now within this interval [0, o), the function is defined in 3 sub-intervals, [0,1], [1,2] and

[2, ). So, we have to break the above integration into 3 parts as follows:

1 2 [*3)

e‘Sf-Odt+j e‘Sttdt+J e st.0dt
2

1

LF@) = |

0

So, this is nothing but flz e St t dt. And if we evaluate this integral using integration by

parts, then it results into

L{F(D)} = [—ge-st]z + % fl st g

1

- ()],

So, if we put the limits, we will obtain

L{F®)} = - (é + siz) e % + (1 + i) =

s s2



So, whenever we have a function which is defined in many sub-intervals, we will simply
break [0, o) into those many intervals like we did it here, and we can solve the problem
easily.

(Refer Slide Time: 05:41)

Our next example is we want to find out Laplace transform of sinv't.

(Refer Slide Time: 05:47)

Example
Find L{sin v/}

We have already discussed the Laplace transform of sin t, but now it is sinv't.
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We can simply expand sinvt in Taylor series. After expansion, we will obtain

e - 0 6

which will continue to infinite number of terms.

So, now we have

£3/2 5/2
N e

Laplace transform of each of these terms is known to us. Therefore, we can write it as:
L\/__L 1/2 1L 3/2 1L 5/2
{sinvt} = L{t }_i {t }+§ {¢5/%} -
using the linearity property.

Evaluating the individual Laplace transforms, we have,

E 5
L{sm\/_}—Tz—31F—2)+ir
S2

r'(n+1)
TR

NOTE: L{t"}=



3

. Vi 1 1,1\ 1/1
= L{sinvt} = 557 1‘@*5(@) ‘5(@) +e

1
And the expression within the third bracket is nothing but the series expansion of e 4s.

Therefore,

L{sinvt} = Ve e_4_1s.

253/2
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<+« (Using Gamma function)

=tk (Using Taylor Series)

So, we see that if the function is complicated, it becomes difficult sometimes to find out
the Laplace transform. So in order to make it simple, we will study certain properties of

Laplace transform with which, very easily, we can find out the desired results.



We start with the First Translation (or Shifting) Property.
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L Csverenssecivo
First Translation (or Shifting) Theorem

Theorem
If L{F(t)} = F(s), s >a, then L{e*F(t)} = f(s—a), s >a+a

Proof:
f(s) = L{F(t)} = [ " ()t
40

Me-a)= [a o=t ()t

=
= [ e e F(t)dt
J0

If L{F ()} = f(s) for s > a, then L{e*'F(t)} = f(s —a), s > a + a. Let us see, how

we can derive this one.

(Refer Slide Time: 11:41)

°C _a%
X (M= L AFmY = Ee T At

ol
o). —(h-a)%
J‘L\ )z ) e )r-u)u.

}{"‘ N gk
- e SR

00 &)

From the definition of Laplace transform, we can write,

f(&) =LEF®)} = [ e F(Dat.



Here, if s is replaced by (s — a), we have,

[ee)

f(s—a)= f e~ —OtE()dt

0

Now, we can break the integrand into two parts as

o] [ee)

f(s—a)= f e, e StF(t)dt = f e St [e®F(t)]dt
0 0

This we can write down, L{e% F(t)} by definition of Laplace Transform of e F(t).

[oe]

s f(s—a)= f e St [e®F(t)]dt
0

= L{e®F(t)}.
This proves the theorem.
Next is the second translation or shifting theorem.
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—mm_

Second Translation (or Shifting) Theorem

Theorem
If L{F(t)} = f(s) and

co-{fe-0 2

then L{G(t)} = e~ *F(s)

F(t—a), t>a

0 , t<a.Then

If L{F(t)} = f(s), and if we consider a new function G(t) = {

L{G(®)} = e~ f(s).
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Now, we start the proof from the definition
L{G(t)} = f0°° e StG(t)dt.

This we have to break into two parts according to the definition of G(t) as follows:

a

L{G)} = fo e st.odt+ fwe‘StF(t — a)dt

= f e S'F(t — a)dt
a

We put t — a = x so that dt = dx. Limits of integration will be from 0 to oo, because at

t=a,x=0andatt =o0,x =
> L{G())=e™* foooe‘sxF(x)dx

If we wish we can change the parameter x to t of the integrand, or in other sense this

integral we can write as:
L{G()} = e~ [ e StF(t)dt.

So the integrand is nothing but L{F (t)} = f(s).



Therefore, we have,
L{G@®)} = e 1 (s)
where G (t) has been defined earlier. This completes the proof of this one.
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Proof:

LG(0)} = /n " e G (t)de
= [u :".ud: g /. e F(t - a)dt
s / e (¢ - a)dt

=<}
- f e E(x)de  [Putt—a=1]
0

Sah f:o e ¥ F(x)dx

LG} = e [D " e ()it

= e ®L{F(1)}
=e *f(s)




Next is change of scale property.
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Change of Scale Property
Theorem If L{F(t)} = £(s), then L{F(at)} = %f G)

Proof:

LiFa) = [o " e StE(at) dt

l =]
= [ e*WAF(x)dx  [Putat=x]
aly

e 1
= [ e~ 6OE (1) dt =-r(f)
alo a\a

If L{F(t)} = f(s), then L{F (at)} = % f G) where the parameter t is changed to at.
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For the proof of this one, we will start with

L{F(at)} = fooo e StF(at)dt.



We put in the integral at = x so that dt = %dx and the limits of integration will remain

unchanged. Then

L{F(at)} = %fome‘“/“)xF(x)dx

1 oo
= —f e~ /D (t)dt
aJo

So, the question arises “what is the use of these properties?” These properties will actually
help us to find out the Laplace transform of various complicated functions. Let us see, how

we can use these properties in solving complicated problems.
First let us take this example. We want to find out L{t3e~3¢}.
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Example
Find L{t3e 3}

Solution:

L{r'} =

Lo | =

First Shifting Theorem implies

L{t"’e"'} =

(s+3)
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So, we know L{t3} = %‘f) =3 S% = f(s) (say). Also from the first shifting

s4

theorem, we know that,
L{e®F()} = f(s —a)

where L{F(t)} = f(s).

. 3,-3ty _ __©

~ L{tPe >} = G
Here our problem was to find out the Laplace transform of t3e~3¢. If we had to use the
direct method, we would have to evaluate one complicated integral. But with a very simple
calculation, using the first translation property, we are able to find out the Laplace
transform of such complicated function as well. This is the use of the properties which we

have discussed. Let us see some more examples.

Let us see another complicated problem, to find L{e~2¢(3 cos 6t — 5 sin 6t )}.
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m

Example
Find L{e~*(3cos6t — 5sin 6t)}
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So, we will start from L{3 cos 6t — 5 sin 6t }. We know that

a

and L{sinat} =

L{cosat} =

s
s2+a? s2+a?’

So, we can find out the Laplace transform of (3 cos 6t — 5sin 6t ) very easily.

L{3 cos 6t — 5sin 6t } = 3L{cos 6t} — 5L{sin 6t}



6

:L{3cos6t—55in6t}=3-SZ_|_36—5-SZ_I_36

_3s-30
T 52436

= f(s) (say).
Therefore, L{e 2¢(3 cos 6t — 5sin 6t )} = f(s + 2), using First shifting theorem.
o L{e %' (3 cos6t — 5sin6t)} = f(s + 2)

_3(s+2)-30
T (s+2)2+36

_ 3s—24
TS24 45440
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Example
Find L{e~*(3cos6t — 5sin 6t)}

Solution:
L{3cosbt - 5sin6t} =3~ o
s2+60 52462
35-30
T3

=f(s) (say)
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From First Shifting Theorem,
L{e"*(3cos6t — 5sin6t)} = f(s +2)

_3(s+2)-30
T (422436

o I5-24
T 245+ 40

Let us see, another problem L{et sin? t}.
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m

Example
Find L{e" sin® t}
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Since we know Laplace transform of e*F(t), so if we know Laplace transform of F(t),
from there we can easily calculate Laplace transform of e*‘F(t) using First translation

property. Therefore, for this problem we assume F(t) = sin? t.

So, first we will try to find out the Laplace transform of sin?t. For that, using

trigonometry we can obtain it as % (1 —cos2t)i.e.,
1
L{sin’t} =L {E (1 — cos 2t)}

1 1
=-L{l}—<L 2t}.
S L1} - 3 L{cos 2¢)

We know the Laplace transform of 1, and we also know the Laplace transform of cos 2t,

so we can find out easily:

S

Lsin? 1) = 5 [ =) (say)
sin“t} = |-— 57 = f(s) (say).
Therefore,
L{etsin®t} = f(s — 1)
_1[ 1 s—1
T 2ls-1 (s-1D%2+4



2

= L{etsin®t} = G- DD+ 4]

In the next classes, we will go through some more properties on Laplace transforms and

discuss some more examples. Thank you.



