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Lecture — 26
Fourier Integral Representation

From this lecture, effectively we are going to start another transform which we call the
Fourier transform. In Laplace transform, basically the interval of the function was from
(0, 00), but in physical problems always it may not be possible that the parameter lies in

the interval (0, o), but it may lie in the interval (—oo, ).

So, we want to study how to handle the situations where one function is defined in
(—o0, ) and we want to find out a solution. For that basically, the Fourier transform was
developed which we will discuss later, but initially let us start with the Fourier integral

representation of a function.
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Fourier Integral Representation

» Letting | — oc in a Fourier Series leads to the introduction of a different type of
representation called a Fourier Integral Representation (FIR) where the
function f(x) is defined ¥x and need not be periodic.

» This representation forms the basis of an integral transform called the Fourier
Transform that is similar to Laplace Transform.

In Fourier Series representation, we can define a function in the interval (-1, 1). Now,
when [ approaches oo in a Fourier series, then this leads to introduction of a different type
of representation which we call as Fourier Integral Representation or FIR where the

function f(x) is defined for all x and need not be periodic.



This representation forms the basis of an integral transform which we call as Fourier
transform that is similar to Laplace transform except that in Laplace transform, the
function f(x) is defined in (0, o), but here the function is defined in (—oo, o). This is
because in real life, in many situations a function will be defined in (—oo, ). So, let us

see what happens in this case.
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Let a function f(x) be defined in an infinite interval (—o0, 0c) and absolutely
integrable over it i.e., 3 an integral

[ irid=0 U

Further let the function f(x) be such that it is expandable into a Fourier Series in any
interval (—1,1)

moo& . 0w
ap cos —l—x+’;b,.sm T* (2)

We have a function f(x) which is defined in the interval (—oo,0) and is term by term
integrable, that is there exists an integral such that we can write down f_°°oo| f(x)|dx is

equal to a finite value Q.
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If we evaluate the integral, it has a definite value. For that, suppose the function f(x) can

be expanded in terms of Fourier series in the interval (—I, ) and we can write down

ag c nm c . nm
f(x) =5 z cosTx+ bnsme (2)

n=1

where
1 l
a=1 | rod
-1
1 l
n = Tf f() cos?tdt
-1

1 (! o nm
bn :Tf f(t) smTtdt
-1
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So, if we put the values of these coefficients a,, a,, and b,, in the equation (2), we will get,

1
o) =5 f Foyde +7

! nm nm
f f() cosTt dtl cosTx
-1

NIH

L nrw nr
J f(t) SinTtdtl sinTx
-1
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This we can write down as



flx) = 2lf f(t)dt+lZf f() [cos—tcos—x+smnTntsmnTﬂx] dt

1 ! 1 L nr(t — x)
= 51) o +7; | r@eos™ e ®)

Now we want to investigate what will be the form of the expression (3) whenever

[ approaches oo.
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Let us introduce some new notatlons, Say @1 = —,0y = —,*,Qy = —
l l l
/s
S pgq — Ay = Aay = T (4)

Now, we substitute this value from (4) into equation (3) to obtain

l i l
flx) = Zilf_lf(t)dt + %Z (f_lf(t) cos a, (t — x) dt) Aa, (5



(Refer Slide Time: 12:19)

So, whenever [ - oo, the first term %f_llf(t)dt approaches 0 since f_°°m|f(x)|dx = Q.
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And, as | — oo, equation (5) reduces to,

f(x)=%Lw<f_oof(t)cosa(t—x)dt>da (6)

And this expression is known as the Fourier integral representation of the function f(x).



Equation (6) occurs at all points where the function is continuous. If the function is

discontinuous at a particular point, by the concept what we have told in the Fourier series,

we can write down

%Lw<f_o;f(t)cosa(t_x)dt>da =f(x+0).;f(x_0)
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where, ao=%/ f(t) dt
-l

10!
a,,=—/ f(t)cosn—"tdt
[ /

|
b= 3/ f(t)sin "t dt
iy

Putting the expressions of the coefficients a, and by into series (2), we can write
1 1t nm nm
f(x) =57/-I f(t) dt + -Z (/ f(t)cos-——t dt) cos—;—x+

: Z ( / f(t)sm—t dt) sin "

1
-5—/ f(t) dt + - Z/ f(t)[cos—tcosTx+smTtsme dt

n—l

=ﬂ/_lf(:) dt+7n§/-’f(t)cosmr - I
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Let us investigate what form expression (3) will take when passing to the limit as
I = 00

We introduce the following notation

™ 2 nr (n+1)m
A = 50 = =0y = =, Qpy] =

/ I / /

7" . b
L Qppl Q= T ie, Aa,= 7 (4)

Substituting into (3), we get

(/2ﬂﬁcwaﬂt—x)m)Aan

fm=%[ymm+%i

n=1
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As | = oo, the first term on the RHS approaches 0.
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For any fixed I, the expression in the parenthesis is a function of v, which takes on
values from 7 to 0o
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As | = 00, (5) takes the form

f(x) = % /0 g ( / Z f(t)cosat - x) dt) da (6)

This expression is known as the FIR of the function f(x).

Equation (6) occurs ¥ points where the function is continuous.

At points of discontinuity, we have

%/o°° (/:, F(t)cosalt - x) dt) da = ﬁ("ﬂi;_'("_‘"l

Now, let us expand cos a(t — x) in the equation (6).
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cos a(t — x) = cos at cos ax + sin at sin ax

Putting this in equation (6), we have,



f(x) =%Lw(f_oof(t)cosatdt>cosaxda

+%j000(joof(t)sinatdt>sinaxda (7

Let us take some particular cases of this equation (7)
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Case 1: Let f(x) be even. Whenever f(x) is even, f(x) cosat iseven and f(x) sinat
is odd. So,

Joof(t) cosatdt = ZJoof(t) cos at dt
—o 0
foof(t)sinatdt =0

So, in that case, equation (7) can be written as

f(x)—;j; <L f(t) cosat t)cosax a (8)
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Case 2: Let f(x) be odd. Whenever f(x) is odd, f(x) cosat is odd and f(x) sinat is

even. So,

foof(t)cosatdt =0



fmf(t) sinatdt = ZJ-oof(t) sin at dt

So, if f(x) be odd, equation (7) can be written as

A0 i dt | si d 9
f(x)—;fo <f0 f(t)sinat t>smax a 9

And again, please note that for both the equation (8) and (9), if at a particular point x, the

function f(x) is discontinuous, then the value of f(x) will be equal to

fx+0)+f(x-0)
2

Thank you.



