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Lecture – 24 

Parseval’s Theorem and its Applications 

 

In the last lecture, we have done the half range Fourier sine and cosine series whenever a 

function is defined in [0, 𝑙]. The function 𝑓(𝑥) which is defined in [0, 𝑙] can be expressed 

as a half range Fourier sine series or can be expressed as a half range Fourier cosine series; 

accordingly as we are expressing it in only sine terms or in cosine terms respectively. 

Now in this particular lecture, we will study a theorem which we call the Parseval’s 

Theorem and after that, we will study the applications of Parseval’s Theorem as well. 
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Parseval’s Theorem states: let 𝑓(𝑥) be a periodic function with period 2𝜋 and defined in 

the interval (−𝜋, 𝜋), then the following relation holds 

1

𝜋
∫ [𝑓(𝑥)]2𝑑𝑥

𝜋

−𝜋

=
𝑎0

2

2
+ ∑(𝑎𝑛

2 + 𝑏𝑛
2)

∞

𝑛=1

 

where, 𝑎𝑛 and 𝑏𝑛 are the Fourier coefficients of 𝑓(𝑥) provided the Fourier series of 𝑓(𝑥) 

converges uniformly in (−𝜋, 𝜋). 
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Now we come to a new concept called uniform convergence. The series ∑ 𝑢𝑛(𝑥)∞
𝑛=1  is 

said to be uniformly convergent in the interval (𝑎, 𝑏) if for a given 𝜖, a very small number 

greater than 0, there exists a number 𝑁 which is independent of 𝑛 such that for any 𝑥 we 

take in the interval (𝑎, 𝑏), we have 

|𝑠(𝑥) − 𝑠𝑛(𝑥)| < 𝜖    ∀ 𝑛 > 𝑁 

where, 𝑠(𝑥) is the sum of the series and 𝑠𝑛(𝑥) is the sum of the first 𝑛 terms of the series. 

So, one may ask, why this uniformly convergent concept is required here. The reason for 

uniform convergence is that we will see, whenever we are taking the Fourier series and try 

to make the term by term integration, then it will be only possible if the series is uniformly 

convergent. For that reason, this particular assumption has been taken care of in this 

particular case. Now, let us see the proof. 
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We can write 

𝑓(𝑥) =
𝑎0

2
+ ∑(𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥)

∞

𝑛=1

 

Multiplying 𝑓(𝑥) on both sides, we have, 

[𝑓(𝑥)]2 =
𝑎0

2
𝑓(𝑥) + ∑(𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥)𝑓(𝑥)

∞

𝑛=1

 

Now integrating the same from – 𝜋 to 𝜋, we obtain 

∫ [𝑓(𝑥)]2𝑑𝑥
𝜋

−𝜋

=
𝑎0

2
∫ 𝑓(𝑥)𝑑𝑥

𝜋

−𝜋

+ ∑ (𝑎𝑛 ∫ 𝑓(𝑥)
𝜋

−𝜋

cos 𝑛𝑥 𝑑𝑥 + 𝑏𝑛 ∫ 𝑓(𝑥)
𝜋

−𝜋

sin 𝑛𝑥 𝑑𝑥)

∞

𝑛=1

              (1) 

and whenever we are integrating each term from – 𝜋 to 𝜋, then the concept of uniform 

convergence arises. Now this term by term integration of this series on the right hand side 

is possible only when 𝑓(𝑥) is uniformly convergent and for that reason, the assumption 

has been taken that 𝑓(𝑥) is uniformly convergent in the given interval. 
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Now, let us perform the integrations term by term. Therefore, 

∫ 𝑓(𝑥)𝑑𝑥
𝜋

−𝜋

= ∫ [
𝑎0

2
+ ∑(𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛 sin 𝑛𝑥)

∞

𝑛=1

] 𝑑𝑥
𝜋

−𝜋

 

=
𝑎0

2
∫ 𝑑𝑥

𝜋

−𝜋

+ ∑ [𝑎𝑛 ∫ cos 𝑛𝑥 𝑑𝑥
𝜋

−𝜋

+ 𝑏𝑛 ∫ sin 𝑛𝑥 𝑑𝑥
𝜋

−𝜋

]

∞

𝑛=1

 

= 𝜋𝑎0 + ∑ [𝑎𝑛 [
1

𝑛
sin 𝑛𝑥]

−𝜋

𝜋

− 𝑏𝑛 [
1

𝑛
cos 𝑛𝑥]

−𝜋

𝜋

]

∞

𝑛=1

 

= 𝜋𝑎0 

So, from here we can tell, what is the value of 𝑎0. Again, 

∫ 𝑓(𝑥)
𝜋

−𝜋

cos 𝑛𝑥 𝑑𝑥 = ∫ [
𝑎0

2
+ ∑(𝑎𝑘 cos 𝑘𝑥 + 𝑏𝑘 sin 𝑘𝑥)

∞

𝑘=1

] cos 𝑛𝑥 𝑑𝑥
𝜋

−𝜋

 

=
𝑎0

2
∫ cos 𝑛𝑥 𝑑𝑥

𝜋

−𝜋

+ ∑ [𝑎𝑘 ∫ cos 𝑘𝑥 cos 𝑛𝑥 𝑑𝑥
𝜋

−𝜋

+ 𝑏𝑘 ∫ sin 𝑘𝑥 cos 𝑛𝑥 𝑑𝑥
𝜋

−𝜋

]

∞

𝑘=1

 

= 0  for 𝑘 ≠ 𝑛 

And for 𝑘 = 𝑛, we have, 

∫ 𝑓(𝑥)
𝜋

−𝜋

cos 𝑛𝑥 𝑑𝑥 = 𝑎𝑛 ∫ cos2 𝑛𝑥 𝑑𝑥
𝜋

−𝜋

+ 𝑏𝑛 ∫ sin 𝑛𝑥 cos 𝑛𝑥 𝑑𝑥
𝜋

−𝜋

 



=
𝑎𝑛

2
[𝑥 +

sin 2𝑛𝑥

2𝑛
]

−𝜋

𝜋

−
𝑏𝑛

2
[
cos 2𝑛𝑥

2𝑛
]

−𝜋

𝜋

 

= 𝜋𝑎𝑛 

Therefore, we have, 

∫ 𝑓(𝑥)
𝜋

−𝜋

cos 𝑛𝑥 𝑑𝑥 = 𝜋𝑎𝑛 

Similarly, we can show that 

∫ 𝑓(𝑥)
𝜋

−𝜋

sin 𝑛𝑥 𝑑𝑥 = 𝜋𝑏𝑛 
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Now substituting the obtained results in equation (1), we have, 

∫ [𝑓(𝑥)]2𝑑𝑥
𝜋

−𝜋

=
𝑎0

2
𝜋𝑎0 + ∑(𝑎𝑛𝜋𝑎𝑛 + 𝑏𝑛𝜋𝑏𝑛)

∞

𝑛=1

 

=
𝜋𝑎0

2

2
+ 𝜋 ∑(𝑎𝑛

2 + 𝑏𝑛
2)

∞

𝑛=1

 

⇒
1

𝜋
∫ [𝑓(𝑥)]2𝑑𝑥

𝜋

−𝜋

=
𝑎0

2

2
+ ∑(𝑎𝑛

2 + 𝑏𝑛
2)

∞

𝑛=1

 



This completes the proof of Parseval’s Theorem. 
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Let us now see the applications of this. 



(Refer Slide Time: 19:57) 

 

First we come across Root mean square. The root mean square or rms of a function 𝑓(𝑥) 

over an interval (𝑎, 𝑏) is defined as 

[𝑓(𝑥)]𝑟𝑚𝑠 = √∫ [𝑓(𝑥)]2𝑑𝑥
𝑏

𝑎

𝑏 − 𝑎
 

This value can be obtained using the Parseval’s Theorem itself. 

The rms value is sometimes also known as the efficient value of the function and the 

Parseval’s Theorem gives the value of rms of 𝑓(𝑥) in terms of the Fourier coefficients. 

One or two applications are theory of mechanical vibration and electric circuit theory. The 

rms concept is used widely and the involved calculations can be done very easily using 

Parseval’s Theorem. 
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Now, let us see one example. We want to prove that 

∑
1

𝑛4

∞

𝑛=1

=
𝜋4

90
 

from the Fourier series expansion of 𝑓(𝑥) = 𝑥2, −𝜋 < 𝑥 < 𝜋. 
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The Fourier series expansion of 𝑓(𝑥) = 𝑥2, −𝜋 < 𝑥 < 𝜋 has already been discussed in 

the previous lectures where we had obtained 



𝑎0 =
2𝜋2

3
,   𝑎𝑛 =

4

𝑛2
(−1)𝑛,   𝑏𝑛 = 0  

So we can directly write the Fourier series expansion of 𝑓(𝑥) = 𝑥2, −𝜋 < 𝑥 < 𝜋 as 

𝑥2 =
𝜋2

3
+ ∑

4

𝑛2
(−1)𝑛 cos 𝑛𝑥

∞

𝑛=1
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Now, from the Parseval’s Theorem, we know that 

1

𝜋
∫ [𝑓(𝑥)]2𝑑𝑥

𝜋

−𝜋

=
𝑎0

2

2
+ ∑(𝑎𝑛

2 + 𝑏𝑛
2)

∞

𝑛=1

 

Substituting here, 𝑓(𝑥) = 𝑥2, and the values of 𝑎0, 𝑎𝑛 and 𝑏𝑛, we obtain, 

1

𝜋
∫ 𝑥4𝑑𝑥

𝜋

−𝜋

=
1

2

4𝜋4

9
+ ∑ (

16

𝑛4
+ 0)

∞

𝑛=1

 

⇒
2𝜋4

5
=

2𝜋4

9
+ 16 ∑

1

𝑛4

∞

𝑛=1

 

⇒ ∑
1

𝑛4

∞

𝑛=1

=
𝜋4

90
 

This solves our problem. 



Now, let us take another example. 

(Refer Slide Time: 26:07) 

 

From the half range cosine series expansion of the function 𝑓(𝑥) = 𝑥 which is defined in 

(0, 𝜋), we need to show that 

∑
1

(2𝑛 − 1)4

∞

𝑛=1

=
𝜋4

96
 

and the half range cosine series of the function 𝑓(𝑥) = 𝑥 is already known to us. So as 

already obtained in the previous lectures, we can write the half range cosine series of 

𝑓(𝑥) = 𝑥 as 

𝑥 =
𝜋

2
−

4

𝜋
∑

cos(2𝑛 − 1)𝑥

(2𝑛 − 1)2

∞

𝑛=1

 

where 

𝑎0 = 𝜋,    𝑎𝑛 = {−
4

𝑛2𝜋
, if 𝑛 is odd

0, if 𝑛 is even
 

Now, from Parseval’s Theorem directly we can write, 



1

𝜋
∫ 𝑥2𝑑𝑥

𝜋

−𝜋

=
𝜋2

2
+

16

𝜋2
∑

1

(2𝑛 − 1)4

∞

𝑛=1

 

⇒
16

𝜋2
∑

1

(2𝑛 − 1)4

∞

𝑛=1

=
2𝜋2

3
−

𝜋2

2
 

⇒ ∑
1

(2𝑛 − 1)4

∞

𝑛=1

=
𝜋4

96
 

This completes the proof. 
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So, effectively the Parseval’s Theorem is very useful in electrical engineering cases, where 

they have to calculate the rms value or the efficient value of the function. Thank you. 


