Transform Calculus and Its Application in Differential Equations
Prof. Adrijit Goswami
Department of Mathematics
Indian Institute of Technology, Kharagpur

Lecture — 02
Existence of Laplace Transform

In this lecture, we will see how functions of exponential order are related to Laplace
transform.

Let us first see the existence of Laplace transform.
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Existence of Laplace Transform

Theorem
If F(t) is piece-wise continuous in every finite interval and is of exponential order a as
t — oo, then Laplace transform of F(t) i.e. f(s) exists ¥s > a

Proof: Let F(t) be piece-wise continuous in every finite interval and of exponential

order @ as t — oo
Let tg > 0. Then,
f(s) = [y e F(t)dt
= [y e *F(t)dt + [ e~*F(t)dt |®

This means, if we consider any function, whether or not the Laplace transform of that
function will exist. For that, we have a theorem which says that if F(t) is a piecewise
continuous function in every finite interval and is of exponential order a as t — oo, then

Laplace transform of F(t) i.e., f(s) will exist for all s > a.

So, we observe two conditions basically: firstly, the function F(t) has to be piecewise
continuous in every finite interval and secondly, it should be of exponential order a, then
the Laplace transform of F(t) exists and is equal to f(s) V s > a. Now let us see the proof

of this theorem.



It is given that F(t) is a piecewise continuous function in every finite interval and is of

exponential order a.
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We take t, > 0, then from the definition of Laplace transform, we have,

o]

f(s) =f e SLE(t) dt.
0

We can break [0, o) into two intervals namely [0, t,] and [t,, oo] as follows:

to co

e StE(t) dt+f e StF(t) dt.

to

f(S)=j0

Now, since F(t) is a piecewise continuous function, so by using continuity of F(t) in
[0, t,], we can say that the first integral will exist. Again F (t) is of exponential order a as

t — oo. This implies

lim e %tF(t)

t—oo

is finite and there will exist some real number M > 0 such that the following relation
holds:

|F(t)] < Me* V t>t,. (1)



Now,
| et (0) dt| < [le™ F(0)| dt = [, e~ |F(t)] dt
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Therefore, using (1), we have,

sf e‘“|F(t)|dt<f e StMe® dt
t t

0 0

f e StF(t) dt
t

0

This integral can be easily evaluated to obtain the following:

(oe]
<f e StMe® dt
t

0

f e StF(t) dt
t

0

=M| e (Dt
to

[ e—(s—a)t *®

G-,

e~ (-a)to
=M|0+—0
i (s—a)
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Now, 22— can be made as small as possible by choosing t, sufficiently large i.e., if

e—(s—a

. . . . )to
we select a t,, sufficiently large, then we can make this whole quantity, MT as small

as possible. Thus we can say that the integral [ : e StF(t) dt exists for all s > a.
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Continuity of F(t) in the finite interval (0, to) implies that [’ e~*F(t)dt exists. It
remains to show that [, e~ F(¢)dt exists Vs > a.

F(t) is of exponential order a as t — oo implies

lim e~ F(t
jlon e=LE]

is finite i.e., given a number tp, 3 a real number M > 0 such that
[e™F(t)| <M Yt >t
ie, |F(t) < Me™ Yt >ty
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Now, / e F(t)dt
L]

< [ e (1) dt
t

= /me"'|F(r)[dr

= <]
< f e " Me™ dt
t

{s o}
=M [ e b-tg
1]

Me—(s-a)ts
= ifs>a

Me~(5-alt
5—a
Hence, [, e~*F(t) dt exists s > a

can be made as small as we please by choosing to sufficiently large.

So, this completes the proof that the Laplace transform of a function will exist, if the

function is piecewise continuous and is of exponential order.



Now we give a general definition here of a function of class A.
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A function of class A

Definition

A function which is piece-wise (or sectionally) continuous on every finite interval in the
range t > 0 and is of expanential order as t — oo is known as "a function of class
A

An Alternate Definition:

If F(t) is "a function of class A", then Laplace Transform of F(t) exists for all
s>a

SWagain

A function F(t), which is piecewise continuous on every finite interval in the range t > 0
and is of exponential order as t — oo, then it is known as function of class A. Again, from

the given conditions, we can also say that the Laplace transform of F(t) exists.
Now, we give an alternative proof for the existence of Laplace transform.
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Alternate Proof for the existence of Laplace Transform

Proof:
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. F(s) converges absolutely and hence converges. Hence f(s) exists.

We can start from,



[ee)

f(s)] = < f le=StF(6)] dt = f e~StF(0)] dt
0 0

f e StF(t) dt
0

Now using |F(t)| < Me%, we have
F@I <M [ emstent a
0
The RHS can be easily integrated as follows:
If(s)l <M fooe‘(s‘a)t dt
0

[ e—(s—a)t ®

—(s—a) t=0

- 1
=Moo+ ]
| s—a

—Mf > 2
=5—, fors>a (2)

Therefore, we can say f(s) converges absolutely and hence converges so that f(s) exists.
There is a remark on this.
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Remark

The conditions given in the theorem for existence of Laplace Transform are sufficient

for the existence of L{F(t)} but are not the necessary conditions. If these conditions
are satisfied, then Laplace Transform must exist. If these conditions are not satisfied,

then Laplace Transform may or may not exist.




The conditions given in the theorem for existence of Laplace transform are sufficient for
the existence but not necessary which means that if these conditions are satisfied by a
function F(t), then its Laplace transform will exist, but if these conditions are not satisfied,

then L{F (t)} may or may not exist.
Let us take one example that will support this stated remark.
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Example in support of the Remark

1
Consider the function F(t) = —= which is oc at t = 0. Still its transform exists.

vt

1 £ 1 11
o il =/ gl a'r:—/ e 12 gy
{\/ﬂ} Jo vt vrh
00
/ e *x V2 dx [Putst=x|
0

1
Vs,

1
= = 07)

1
=—r=—= 5>0

VA

L
\/’El
t = 0, the function does not exist. But we will show that its transform always exists. Now,

Consider F(t) = which tends to oo at t = 0. From the function itself, it is clear that at

from definition,

L{ ! } f st L dt
—t = e St —— dt.
Vrt)  J vt
which can be written in a simplified way as:

1 1 *®
L {—} =— f e Stt=1/2 dt,
Vat) N )y

In order to integrate the above, we put st = x so that dt = %dx and the limits of integration

remain unchanged. We have now



L {i} = 1 fme‘xx‘l/2 dx.
Vat)  ~ms )y

Now, as we know [“e™*x~1/2dx =T G) = +/m. Therefore,

L{\/%}=%, s>0

So, whenever we have a function F(t) = \/%Which is neither piecewise continuous nor of

exponential order (since at t = 0, value of the function is o), still its Laplace transform

exists.

Therefore, the conditions that we have listed for existence of Laplace transform are only

sufficient but not necessary.
Now, let us try to find out the Laplace transform of certain well-known functions.
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Example
Find the Laplace transformation of the function F(t) = t*, (a > —1)

Suppose we need to find out the Laplace Transform of the function F(t) = t%, with a >
—1.
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So from definition,

o]

L{F(t)} = L{t*} = J e Stte dt.
0

If we put st = x, then we have dt = idx and the limits of the integration will remain

unchanged. This reduces the integral to

L{t*} =

[ee]
f e *x%dx
0

Sa+1

which can be evaluated using Gamma function

L{t%} =

(o)
-x.(a+1)-1
s‘”lj;) e *x dx

_Ta+1)

S s> 0.
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In a similar manner, we can consider F(t) = t™, where n is a positive integer. We can tell

r'(n+1)
sn+1

that Laplace transform of t™ is equal to and we know, I'(n + 1) = n!. So, if we have

a function F(t) = t™, where n is positive integer, then its Laplace transform is given by

L{t™) = M, 5> 0

Now we can take n = 0,1,2, ... and we can get the Laplace Transforms of various functions

as follows:
ro+1 1
forn =0, L{t°} = L{1} = % -, s>0
s
ra+1 1
forn=1, L{t'} = L{}—¥——2, s>0
s
r+1) 2

fOTTl=2, L{tz} ST—S—3, s> 0.
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Example
Find the Laplace transformation of the function F(t) = %, (a > -1)

Solution:
{-+] 1 {~+]
L{t‘}:]l; e‘”t"dt:;i A e “x%dx  [Putst=x]
1 00
et —x_[(at+1)-1
= 3'1/0 e *x(at-1gy
Ma+1)
==t (s>0)
: o F(n41)  nl
l{t}= 3'“'1 =5ﬂ7 When.nEN

The next example is to find the Laplace transform of the function F(t) = e%.
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Example
Find the Laplace transformation of the function F(t) = e™
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So, Laplace transform of e%t equals f0°° e~ Stet dt (by definition). This can be written as

L{e%} =f e~ (-0t gt
0

And if we calculate the value of this integral, the result is obtained as

—(s—a)t 1%

e

L{e} = ]
t=0

—(s—a)

1
= , s> a.
s—a

Therefore, we can find out the Laplace transform of e for any given value of a from the
above formula.
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Example
Find the Laplace transformation of the function F(t) = e™

Solution:

o0
L{e"} =/ e el dt
Jo

80
=[ eta
0

_g-(s-a]%
= |

t=0

1
S (s>a)

Now, let us move to the next example.
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Example
Find the Laplace transformation of the function F(t) = sin at

Solution:

o0
L{sinat} = [ e “sinat dt
Jo

e ® © g e
==| - cosat ——[ e *cosat dt (Using 'by part’)
t=0

32

e—ﬂ se—sl . 52 o0 A
== |——cosat + ——sinat| - e~*sinat dt
2 2 t=0 L

We have F(t) = sinat. Again, by using the definition of Laplace Transform, we can

obtain the desired result as follows:



[oe]

L{sinat} = f e Stsinat dt.
0

We can use integration by parts twice to evaluate the above integral. Therefore,

[ee]
L{sin at} =f e Stsinat dt
0
B 17 s [®
= — cos at ——f e St cosat dt
a ley alo
r 11 s[[e™st ® S (% _o .
=— O——]—— sin at +—| e Stsinat dt
" al af]| a e @Jo

=§_2@—0+§ummﬂ]

1 s?
== -2 I{sinat
P {sin at}
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etk se st
: Lsinat} = - [T cosat+—— sin at] ~ 2 L{sin(at)}
t=0

2 st —st
| ik 7 O I L P R
a a ] 5
242 st %
= (a -1;5 )‘—{5""(31)} =- E—z(acosat+35inat)}
- & t=0

et i
= L{sin(at)} = - [—(a cosat + ssin at)}
sP 4 @ i

Clearly, we observe that after applying integration by parts twice, L{sin at} is obtained on

the right hand side as well.

. 1 s?
L{sinat} = — — — L{sin at}
a a



s? . 1
= |1+ — | L{sinat} =—
a a

= L{sinat} = 1 <a—2>

a\s? + a?

= L{sin at} _z >0
sinatj = , S .
s2 +a?
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acosat 4 ssinat
Ast—=oo= e = 0and —————— is bounded.

'+ a

ot
= ———(acosat +ssinat) — 0.
52+az( )

acosat + ssinat a
-
st +a? st 42

Ast—=0= e~ —=1and
"

a
= ———(acosat +ssinat) =+ ——.
s’+a?( ) st 4 a?

o Lsinat} =

s 4 al

So, using the obtained result, we can calculate the Laplace transform of sin at for any

given value of a.

Next we come to the Laplace transform of the function cos at.
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Example
Find the Laplace transformation of the function F(t) = cos at

ol
L..\_t.u “J‘B - Be'ht

Coyakdt
°
=, qﬂ“@.;'“ by g)m
= et —Scaia
\_,n"+o." l
=0
e LYY
- h‘*_mlﬂ
L \S'\m “’55 = --i:—\_'—
Ny

Similar to the previous problem, we use the definition of Laplace Transform to evaluate
L{cos at}. Therefore,

[oe]

L{cosat} = f e St cosat dt.
0

In order to evaluate this, we can also directly apply the integration formula for

ax eax
[ €% cosbx dx =

—5z (@cos bx + bsin bx). So, we obtain the following:




[oe]

——— (—scos at + asin at)
s +a =0

—st

L{cosat} =

1
=0- s2+a? (=s)
> >0
=—, s )
s2 4+ a?
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Example
Find the Laplace transformation of the function F(t) = cosat

Solution:

=}
L{cosat} =/ e " cosat dt
Jo
e ¥ #
= sz.l_—a?(asin at — scosat)

t=0
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As already proved, from (2), we have % s > a. Therefore, whenever we take lim f(s),
- S—>00

this value should always be equal to 0 since M is finite. So, we obtain
lim f(s) = lim L{F(t)} = 0. 3
S—00 S—00

Now, from (2), we have,

< M >

fOI<s— s>a
sM
= <

ISf(S)I_S_a

< M

=7 _a

S

<M for sufficiently large M.

. . S .
From here, we can conclude that there are functions like 1, s, p—y which can never be

the Laplace transform of any function. This is because, as s — oo, these functions will
never approach 0 as is derived in (3). In short, if a function f (s) is the Laplace Transform

of any function F(t), then it should tend to 0 as s — oo i.e., (3) should be satisfied.



Let us now consider the unit step function.
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Unit step function is denoted in various ways as u, (t) or sometimes as u(t — t,) and is

defined as

1, t=>t
u,®=ut—t) ={ I

This is not a continuous function, instead it is piecewise continuous.

If we try to find out the Laplace transform of u(t — t,), we will use the definition again.

o]

L{u(t —ty)} = f e Stu(t —ty) dt
0

According to the definition of the unit step function, we can break this integral into two

parts, one from 0 to t, and the other from ¢t to oo as follows:

[oe]

e st.odt + j e st.1dt

to

to

L{u(t —ty)} = f

0

[ee]
=f e St dt.
t

0

This integral can be easily solved to obtain the following result:



L{u(t — to)} = [e] _e

—Ssto
Therefore, the Laplace transform of unit step function is g

Next, we have to evaluate the Laplace Transform of cosh at and sinh at

(Refer Slide Time: 30:07)

Example

Find the Laplace transformation of the functions cosh at and sinh at
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As we are familiar with the formulas of cosh at and sinh at, therefore, we proceed as

below:

eat + e—at
2 }

L{cosh at} = L{

= %L{e“t} + %L{e‘at} (using linearity property)

1 1
_2(s—a)+2(s+a)

S
—m, S>|Cl|.

S . .. .
and in a similar fashion, we can

Therefore, Laplace transform of cosh at equals ———;
S“—a

evaluate the Laplace transform of sinh at as well.

eat e—at
L{sinh at} =L {T}

1 1
_ - aty _ = —at
=3 L{e%} 3 L{e~ %}

1 1
_2(s—a)_2(s+a)

a
—m, s> |al.

a
Therefore, Laplace transform of sinh at equals ——.
Se—a

Thank you.



