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Lecture – 15 

Solution of Ordinary Differential Equations with constant coefficients using 
Laplace Transform 

  

Now let us come to another application of Laplace transform: how to find out the solution 

of an ordinary differential equation using Laplace transform? In general, what we have 

observed is that, in order to find out the solution of an ordinary differential equation, 

usually we use the C.F.-P.I. method or some other known methods, depending upon the 

type of the problem. 

Here we will see that whenever we have an ordinary differential equation, it can be 

transformed into one algebraic equation only, using Laplace transform. And from the 

solution of the algebraic equation, we can get back the solution of the original problem 

using inverse Laplace transform. 

So, in this way, it becomes very easy to solve an ODE. Let us go through the involved 

procedure. 
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First, we will solve an ODE with constant coefficients, then we will continue with the one 

having variable coefficients as well. Then we will see the solution of linear simultaneous 

ODE. 

The first one is the solution of ordinary differential equation with constant coefficients by 

the method of Laplace transform. What do we mean by linear ODE with constant 

coefficients? We consider the following as a linear differential equation with constant 

coefficients namely ܿଵ, ܿଶ, … , ܿ. Thus the general form of an ODE with constant 

coefficient is 

݀ݕ
ݔ݀

 ܿଵ
݀ିଵݕ
ିଵݔ݀

 ⋯ ܿିଵ
ݕ݀
ݔ݀

 ܿݕ ൌ  ሻݐሺܨ

where ܨ is a function of the only independent variable ݐ. Here ݕ is the dependent variable 

and ݐ is the independent variable. 

Whenever we try to find out the solution in normal classical approach, we use the 

complementary function (C.F.) and we use the particular integral (P.I.). We find out C.F., 

we find out P.I. and from there we try to find out the solution of the arbitrary constants 

using the given conditions. 
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So, we assume that a set of initial or boundary conditions are given like ݕሺ0ሻ ൌ  	,	ܣ

ሺ0ሻ′ݕ ൌ ,	ଵܣ ⋯ , ିଵሺ0ሻݕ ൌ ,ܣ ିଵ whereܣ ,ଵܣ ,ଶܣ … ,  ିଵ are constants. So, effectivelyܣ



if we have the ݊௧ derivative that is 
ௗ௬

ௗ௫
, then number of constants should be ݊  and ݊  initial 

or boundary conditions will be appearing so that we can find out the values of those 

constants easily. 

So the procedure goes as: We will take the Laplace transform on both the sides of the given 

ordinary differential equation. Using the properties of Laplace transform and the given 

initial or boundary conditions, we will then obtain an algebraic equation from it, known as 

subsidiary equation. And from that subsidiary equation, we can find out a solution in the 

form of ݕሺݏሻ or Laplace transform of ܻሺݐሻ. Once we are getting this, then using the inverse 

Laplace transform, we can obtain the value of ܻሺݐሻ easily i.e., the required solution is 

obtained by finding the inverse Laplace transform of ݕሺݏሻ. 

So, basically the method is very simple. Whenever the original problem is given to us, we 

will find out the Laplace transform on both sides of the given equation. We know the 

Laplace transform of 
ௗ௬

ௗ௫
 or Laplace transform of ݐ ௗ

௬

ௗ௫
 and we will use the initial or 

boundary conditions, whatever is supplied to us, and using those conditions, always we 

can transform our original ordinary differential equation into an algebraic equation of the 

form ݕሺݏሻ ൌ  .ሻሽݐሼܻሺܮ

So that from there, if we take the inverse Laplace transform, then we can easily evaluate 

ܻሺݐሻ. Please note one thing over here that all the values of the conditions are given at the 

point ݐ ൌ 0. 

Because if we take any value of the function at any other point, we have to use some other 

substitution beforehand, because whenever we take Laplace transform of derivatives, 

always we will need values at the point ݐ ൌ 0. 

So, let us see, how it works. Suppose we want to solve 

݀ଶݕ
ଶݐ݀

 ݕ ൌ 0	, ݕ ൌ 1,			
ݕ݀
ݐ݀

ൌ 0		when		ݐ ൌ 0. 
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Let us see the solution process. 
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We will first take Laplace transform on both sides of the given equation. We know that, 

ܮ ቄ
ௗమ௬

ௗ௧మ
ቅ ൌ ሽݕሼܮଶݏ െ ሺ0ሻݕݏ െ  ,ᇱሺ0ሻ. So, taking Laplace transform on both sides we getݕ

ሽݕሼܮଶݏ					 െ ሺ0ሻݕݏ െ ᇱሺ0ሻݕ  ሽݕሼܮ ൌ 0	



⇒ ሽݕሼܮଶݏ െ ݏ ⋅ 1 െ 0  ሽݕሼܮ ൌ 0	

⇒ ሽݕሼܮ ൌ
ݏ

ଶݏ  1
. 

Once we have obtained ܮሼݕሽ, we can now use the inverse Laplace technique to evaluate 

 :ሻ asݐሺݕ

ሻݐሺݕ ൌ ଵିܮ ቄ
ݏ

ଶݏ  1
ቅ ൌ cos  .ݐ

So, we have obtained the final solution. Thus, in very easy steps, without doing much 

calculations, we are taking the Laplace transform on both sides of the given equation and 

by that way, the ordinary differential equation is transformed into an algebraic equation as 

shown in the problem. Here, we have substituted the values which are provided to us i.e., 

initial conditions or boundary conditions, whatever it may be. Using those values, we are 

obtaining ܮሼݕሽ and taking inverse Laplace transform, we will get the solution. Now at 

present, we have taken ODE with constant coefficients only, not variable coefficients. So, 

this is the basic mechanism to solve such problems. 

Let us take another problem: 

݀ଶݕ
ଶݐ݀

െ 2
ݕ݀
ݐ݀

 ݕ2 ൌ 0		, ݕ ൌ 1,
ݕ݀
ݐ݀

ൌ 1	when	ݐ ൌ 0. 
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Similar to the previous problem, here also, we will take Laplace transform on both sides 

of the given ordinary differential equation to obtain 

					ሾݏଶܮሼݕሽ െ ሺ0ሻݕݏ െ ᇱሺ0ሻሿݕ െ 2ሾܮݏሼݕሽ െ ሺ0ሻሿݕ  ሽݕሼܮ2 ൌ 0	

⇒ ሾݏଶܮሼݕሽ െ ݏ െ 1ሿ െ 2ሾܮݏሼݕሽ െ 1ሿ  ሽݕሼܮ2 ൌ 0											ሺ∵ ሺ0ሻݕ ൌ 1, ᇱሺ0ሻݕ ൌ 1ሻ	

⇒ ሽݕሼܮ ൌ
ݏ െ 1

ଶݏ െ ݏ2  2
ൌ

ݏ െ 1
ሺݏ െ 1ሻଶ  1

. 

So, once we are getting ܮሼݕሽ, we can easily obtain ݕ from here by taking Laplace inverse. 

Therefore, we get 

⇒ ሻݐሺݕ ൌ ଵିܮ ൜
ݏ െ 1

ሺݏ െ 1ሻଶ  1
ൠ 
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Using the first shifting theorem, we can write down  

ሻݐሺݕ ൌ ݁௧ିܮଵ ቄ
ݏ

ଶݏ  1
ቅ ൌ ݁௧ cos  .ݐ

So, by this way, we can find out the solution. 
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Now, in the earlier problems, we see that the right hand side was 0 instead of any function 

of ݐ. We are now taking another problem where the right hand side is a function of the 

independent variable ݐ. Suppose we need to solve the following: 

݀ଶݕ
ଶݐ݀

 ݕ ൌ ݐ cos ݐ2 		 , ݕ ൌ 0,
ݕ݀
ݐ݀

ൌ 0	when	ݐ ൌ 0. 
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We take the Laplace transform on both sides of the given equation as usual.  



∴ ܮ ቊ
݀ଶݕ
ଶݐ݀

ቋ  ሽݕሼܮ ൌ ݐሼܮ cos  .ሽݐ2

This again using the property, we can write, 

ሽݕሼܮଶݏ െ ሺ0ሻݕݏ െ ᇱሺ0ሻݕ  ሽݕሼܮ ൌ െ
݀
ݏ݀
ሾܮሼcos 	ሽሿݐ2

⇒ ሽݕሼܮଶݏ െ 0 െ 0  ሽݕሼܮ ൌ െ
݀
ݏ݀
ቀ

ݏ
ଶݏ  4

ቁ	

⇒ ሺݏଶ  1ሻܮሼݕሽ ൌ
ଶݏ െ 4

ሺݏଶ  4ሻଶ
	

⇒ ሽݕሼܮ ൌ
ଶݏ െ 4

ሺݏଶ  1ሻሺݏଶ  4ሻଶ
. 

Now we have to break it in such a way that in the denominator, we have only one factor 

using the normal procedure as discussed in the previous lectures. 
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We will finally obtain it as 

ሽݕሼܮ ൌ െ
5

9ሺݏଶ  1ሻ


5
9ሺݏଶ  4ሻ


8

3ሺݏଶ  4ሻଶ
	 

So, now, we have to find out the Laplace inverse of the above in order to obtain ݕሺݐሻ: 



∴ ሻݐሺݕ ൌ െ
5
9
ଵିܮ ൜

1
ଶݏ  1

ൠ 
5
18

ଵିܮ ൜
2

ଶݏ  4
ൠ 

8
3
ଵିܮ ൜

1
ሺݏଶ  4ሻଶ

ൠ. 

We cannot evaluate the Laplace inverse of 
ଵ

ሺ௦మାସሻమ
 directly, but we have solved such types 

of problems earlier using convolution. So, now we will find out the Laplace inverse of 

ଵ

ሺ௦మାସሻమ
 first. 
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Using Convolution theorem, 

ଵିܮ ൜
1

ሺݏଶ  4ሻଶ
ൠ ൌ ଵିܮ ൜൬

1
2

2
ଶݏ  4

൰ ⋅ ൬
1
2

2
ଶݏ  4

൰ൠ	

ൌ න
1
2
sin ݔ2 ⋅

1
2
sin 2ሺݐ െ ሻݔ ݔ݀

௧


								∵ Lሼsin ሽݐ2 ൌ

2
ଶݏ  4

൨	

ൌ
1
8
න ሾcos 2ሺݐ െ ሻݔ2 െ cos ݔሿ݀ݐ2
௧


 

If we evaluate the integral, we will obtain 

ଵିܮ ൜
1

ሺݏଶ  4ሻଶ
ൠ ൌ

1
16

sin ݐ2 െ
ݐ
8
cos  .ݐ2
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So that, now we can tell the value of ݕሺݐሻ as  

ሻݐሺݕ ൌ െ
5
9
ଵିܮ ൜

1
ଶݏ  1

ൠ 
5
18

ଵିܮ ൜
2

ଶݏ  4
ൠ 

8
3
ଵିܮ ൜

1
ሺݏଶ  4ሻଶ

ൠ	

ൌ െ
5
9
sin ݐ 

5
18

sin ݐ2 
8
3
൬
1
16

sin ݐ2 െ
ݐ
8
cos 	൰ݐ2

ൌ െ
5
9
sin ݐ 

4
9
sin ݐ2 െ

ݐ
8
cos  .ݐ2

This is the required solution of the given ODE. 

So, this is the solution process whenever we are dealing with ODE with constant 

coefficients. In the next lecture also, we will continue with the solution of some other types 

of ordinary differential equations. Thank you. 


