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Lecture - 10 

Bessel Function and its Laplace Transform 
 

In the last lecture, we have defined the Dirac Delta function and discussed how to find 

out its Laplace transform. In this lecture, we will go through another function that is the 

Bessel function. Bessel function is also very well-known and is widely used in various 

engineering and science problems and therefore, we should know its Laplace transform 

as well. 
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The differential equation given by 
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is known as the Bessel’s differential equation or Bessel’s equation of order ݊. 

Now when ݊ is not an integer or 0, the complete solution of Bessel’s equation is 

ݕ ൌ ሻݔ௡ሺܬܣ ൅  ሻݔ௡ሺିܬܤ



where ܬ௡ and ିܬ௡ are totally independent and ܬ௡ሺݔሻ is given by 
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and we call it as Bessel function of first kind of order ݊. The entire expansion is 

presented in the attached lecture slide. 
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When ݊ is an integer or 0, the complete solution of Bessel’s equation is 

ݕ ൌ ሻݔ௡ሺܬܣ ൅ ܤ ௡ܻሺݔሻ 

where ܬ௡ and ିܬ௡ are not independent and 

ሻݔ௡ሺିܬ ൌ ሺെ1ሻ௡ܬ௡ሺݔሻ 

and ௡ܻሺݔሻ is Bessel function of second kind of order ݊. It is also termed as the Neumann 

function. 
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We will now discuss about the solution of Bessel’s equation for ݊ ൌ 0. 
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Whenever ݊ is 0, Bessel’s equation is transformed into  
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and the solution is 
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where ܬ଴ሺݔሻ is known as the Bessel function of order 0. So, basically when ݊ equals 0, 

we are getting the Bessel function of order 0 denoted by ܬ଴ሺݔሻ. 

Now, let us solve some examples. First, we have to prove that Laplace transform of 

Bessel function of order 0 i.e.,  ܬ଴ሺݐሻ is 
ଵ

√ଵା௦మ
. From there, we will try to find out Laplace 

transform of ܬ଴ሺܽݐሻ, ܬݐ଴ሺܽݐሻ, ݁ି௔௧ܬ଴ሺܽݐሻ and we will also evaluate ׬ ሻݐ଴ሺܬ
ஶ
଴  .ݐ݀
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So we start with the Laplace transform of ܬ଴ሺݐሻ. 

As we know, ܬ଴ሺݐሻ ൌ 1 െ ௧మ
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calculate the Laplace transform of ܬ଴ሺݐሻ using the linearity property and the 

formula ܮሼݐ௡ሽ ൌ
௡!
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 as follows: 
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This proves the desired result. 
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The next problem is to evaluate the Laplace transform of ܬ଴ሺܽݐሻ. 
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Let ܨሺݐሻ ൌ ሻݐሺܽܨ ሻ so thatݐ଴ሺܬ ൌ  ሻ. Again we know by the change of scaleݐ଴ሺܽܬ

property, 
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1
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where ݂ሺݏሻ ൌ ሻሽݐሺܨሼܮ ൌ ሻሽݐ଴ሺܬሼܮ ൌ
ଵ

√ଵା௦మ
 as obtained in the previous problem. 

Therefore, 
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So, once we know the Laplace transform of ܬ଴ሺݐሻ, very easily we can find out the 

Laplace transform of ܬ଴ሺܽݐሻ. 

Now we move to ܮሼܬݐ଴ሺܽݐሻሽ. 
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We know, by the property of multiplication by power of ݐ, that ܮሼܨݐሺݐሻሽ ൌ െ ௗ

ௗ௦
 .ሻሽݐሺܨሼܮ

Here, we assume, ܨሺݐሻ ൌ ሻሽݐሺܨݐሼܮ ሻ so thatݐ଴ሺܽܬ ൌ  ሻሽ which we need toݐ଴ሺܽܬݐሼܮ

evaluate. Thus we can write, 
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Next, we want to evaluate ܮሼ݁ି௔௧ܬ଴ሺܽݐሻሽ. 
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We already know by the first shifting property that ܮሼ݁ି௔௧ܨሺݐሻሽ ൌ ݂ሺݏ ൅ ܽሻ where 

݂ሺݏሻ ൌ ሻݐሺܨ ሻሽ. We assumeݐሺܨሼܮ ൌ ሻሽݐ଴ሺܽܬሼܮ ሻ and it is known to us thatݐ଴ሺܽܬ ൌ
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Lastly, we need to evaluate the integral	׬ ሻݐ଴ሺܬ
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We know already the Laplace transform of ܬ଴ሺݐሻ i.e., 

ሻሽݐ଴ሺܬሼܮ ൌ
1

√1 ൅ ଶݏ
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Using the definition of Laplace transform, we can write 

																															න ݁ି௦௧ܬ଴ሺݐሻ
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So, in order to evaluate 	׬ ሻݐ଴ሺܬ
ஶ
଴ ݏ we can simply put ,ݐ݀ ൌ 0 in (1). Hence we obtain 

න ሻݐ଴ሺܬ
ஶ

଴
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So, we have discussed the Laplace transform of ܬ଴ሺݐሻ. Now we will consider the function 

 .ሻ denotes the Bessel function of order 1ݐଵሺܬ ሻ whereݐଵሺܬ
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We have to prove that Laplace transform of ܬଵሺݐሻ is ൤1 െ ݏ

ඥ1൅2ݏ
൨ and once we know that, 

from there we can find out the Laplace transform of ܬݐଵሺݐሻ. 
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It is known to us that 

଴ܬ
ᇱ ሺݐሻ ൌ െܬଵሺݐሻ. 

Again by the Laplace transform of derivative of a function, we have, 
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Using the above two relations, we get, 
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This proves our result. Now, by using the theorem on multiplication by power of ݐ, we 

have, 
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We now come to a new function i.e., the Null Function. 
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The Null function ܰሺݐሻ is a function of ݐ such that for all ݐ ൐ 0, we have 

න ܰሺݑሻ
௧

଴
ݑ݀ ൌ 0. 
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For example, consider a function given by 

ሻݐሺܨ ൌ ൞
1, ݐ ൌ

1
2

െ1, ݐ ൌ 1
0, otherwise

 

or a function defined by 

ሻݐሺܨ ൌ ቄ
1, ݐ ൌ 1
0, otherwise 

Each of these two functions is a null function because if we take their integral within the 

limits 0 to ݐ, the value always will be 0. 
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Whereas, if we consider a function ܨሺݐሻ given by, 

ሻݐሺܨ ൌ ቄ
1, 1 ൏ ݐ ൏ 2
0, otherwise 

So, if we integrate this between the limits 0 to ݐ, we get 

න ሻݑሺܨ
௧

଴
ݑ݀ ൌ න 1.

௧

ଵ
ݑ݀ ൌ ݐ െ 1 ് 0		always. 

Therefore, this function is not a null function. 
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There is a remark in this regard. 
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Laplace transform of a null function is always 0. 

If the Laplace transform of ܨሺݐሻ equals ݂ሺݏሻ (say), then in that case, we can write down 

Laplace transform of ሾܨሺݐሻ ൅ ܰሺݐሻ] is equal to ݂ሺݏሻ (since the Laplace transform of null 

function is 0). 
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So, from the basic property, we can always write down ܮሼܨሺݐሻ ൅ a	null	functionሽ is 

equal to ܮሼܨሺݐሻሽ. This means we may have two different functions [ܨሺݐሻ	and	ܨሺݐሻ ൅

ܰሺݐሻሿ which have the same Laplace transform. 

Consider 2 functions ܨଵሺݐሻ ൌ ݁ିଷ௧ and ܨଶሺݐሻ ൌ ൜
0, ݐ ൌ 1

݁ିଷ௧, otherwise
 

(Refer Slide Time: 26:23) 

 

If we take the Laplace transform of these two functions, we will see 



ሻሽݐଵሺܨሼܮ ൌ ሻሽݐଶሺܨሼܮ ൌ
1

ݏ ൅ 3
.	

So, we have two different functions but the Laplace transform of both are same in this 

case. In the next lecture, we will see what is the implication of this. 

Thank you. 


