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Condition of integrability 

 

Hello students. So up until last class we saw the definitions of partition of a set and we 

also looked into the in how to say, Riemann integration and Riemann integrable 

functions, upper limit, lower limit sum, upper limit sum, and things like that. 

So, today basically we will extend these concepts of Riemann integrable functions; there 

are some how to say integrability conditions for a function to be Riemann integrable and 

we will also try to look into a fundamental theorem of integral calculus if time permits in 

today’s lecture. 
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So, we in the last class we saw that a partition P which is basically given by 𝑥0 𝑥1 up to 

𝑥𝑛 of a closed interval [a,b] such that 𝑎 = 𝑥0 < 𝑥1 < 𝑥2 .  . . < 𝑥𝑛 = 𝑏. So, this is one 

such partition of the set of the of the closed interval [a,b] 

Now, for this partition P we can define the norm of this partition. So, the norm of this 

partition is defined as; so the norm of P is defined by the length of the greatest interval 

greatest of all the subintervals of all the sub intervals [𝑥𝑖−1, 𝑥𝑖] for i running from 1 2 3 



up to n so; that means, norm of P, so norm is usually denoted by ||𝑃|| how to say bar 

notation, so norm of P is basically the greatest. So, we can write as  

. ||𝑃|| = max(𝑥1 − 𝑥0,𝑥2 − 𝑥1, . . . , 𝑥𝑖 − 𝑥𝑖−1, . . . , 𝑥𝑛 − 𝑥𝑛−1) 

            = max1≤𝑖≤𝑛(𝑥𝑖 − 𝑥𝑖−1) 

So, this is the way we define the norm of this partition P, you can also use a notation 

something like 𝜇(𝑃). So, we can write it as  𝜇(𝑃)  and the norm of the partition P you 

can be denoted by this symbol  𝜇(𝑃)  as well  

So, now that the definition of norm of this partition is cleared, we will look into 1 or 2 

integrability condition or to be very precise Riemann integrability condition in this case. 

So, let me start the new page. 
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So, the first one is: so Riemann integral as the limit of a sum. So, this particular 

definition or the representation of a Riemann integral will give motivation to the definite 

integral. So, we will see that what do we mean by it. So, the statement goes like this, so 

we can write a small theorem. 

So, the theorem says that if f is a bounded and integrable function over [a,b] then for 

every 𝜖 positive there corresponds or there exists a 𝛿 positive such that for every 

partition  𝑃 = {𝑎 = 𝑥0, 𝑥1, . . . 𝑥𝑛 = 𝑏}  of norm ||𝑃|| ≤ 𝛿; and for every choice of 



𝜉𝑟 ∈ [𝑥𝑟−1,𝑥𝑟]. So, we choose this point 𝜉𝑟  in any r-th interval [𝑥𝑟−1,𝑥𝑟] . We have, what 

do we have? So, we have 

│ ∑ 𝑓(𝜉𝑟)(𝑥𝑟 − 𝑥𝑟−1) − ∫ 𝑓(𝑥)𝑑𝑥│ < 𝜖
𝑏

𝑎

𝑛

𝑟=1

 

So, what does this theorem actually saying? So, this theorem says that, if we have a 

bounded function f which is also integrable, Riemann integrable over the interval [a,b] 

then for every 𝜖 positive. So, this 𝜖 is an arbitrary chosen small positive number there 

corresponds a 𝛿 > 0  such that for every partition P whose norm ||𝑃|| < 𝛿 we can find a 

point 𝜉𝑟  in the r-th interval such that this value is less than  𝜖. 

So, you see 𝜖 is an arbitrary chosen positive number. So, this integral is nothing but it 

can be expressed as   ∑ 𝑓(𝜉𝑟)(𝑥𝑟 − 𝑥𝑟−1)𝑛
𝑟=1  . So, this integral here it can be represented 

as  ∑ 𝑓(𝜉𝑟)(𝑥𝑟 − 𝑥𝑟−1)𝑛
𝑟=1  . The proof of this theorem is a little bit long. So, we will not 

get into the proof of this of such theorems since, it is a course meant for BSc and BTech 

students. So, we will not get into the proof, but the flavor of this theorem, so what does it 

mean I will try to explain that.  
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So, let us look into this some. So, let us write; so let us look into this some. So, let us 

write, let us say S(P,f)  So, sum over the partition P for the function f we write it as 

∑ 𝑓(𝜉𝑟)(𝑥𝑟 − 𝑥𝑟−1)𝑛
𝑟=1  So, this sum where this 𝜉𝑟 is any arbitrary point between 



[𝑥𝑟−1,𝑥𝑟] . So, the sum basically this sum S(P,f) is called the Riemann sum I beg your 

pardon. So, this sum is called the Riemann sum of f over [a,b] with respect to the 

partition P of [a,b].  

Now, the above theorem can be seen in this following way that if a function f, or in other 

words it can be seen as if a function f is bounded and integrable over the interval [a,b], 

then what we have is we have integral sorry; what we have is we have ∫ .
𝑏

𝑎
 beg your 

pardon, f (x)dx is basically lim𝜇(𝑃).or the norm of P going to 0 such that this limit S P f is 

actually the value of that definite integral. 

So, if you make the how to say  ||𝑃|| → 0; that means, ||𝑃||   or the how to say, the 

length of those intervals when we say that it is going to 0; that means, you are actually 

taking the number of subintervals as very small. And then in that case if you look at this 

figure, let us say this is my f (x) and that is x=a and that is x equal x=b. So, doing this 

definite integral is basically we are calculating this area. if we are doing integral from a 

to b. 

Now, if I take ||𝑃||  norm of partition of P going to 0; that means, I am basically making 

the number of subintervals really small and small. That means, this n here these number 

of subintervals are basically I mean getting larger and larger. So that means, I am taking 

how to say many large,a really large number of subintervals and if you take really how to 

say if you take your 𝑥1 here then, in that case what I am doing is the this area here., This 

area here it is basically if you take 𝑥1 , if you take a really large number of subintervals 

then in that case these small areas are actually converting into a rectangle. And here in 

this formula here 𝑓(𝜉𝑟)(𝑥𝑟 − 𝑥𝑟−1)  this is basically if you forget about the summation 

then this is basically the area of 1 such rectangle. 

So, you are actually dividing integral ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 into some of the areas of really how to 

say large number of rectangles. And if you sum all those areas of rectangles then that 

will actually give you the ∫ .
𝑏

𝑎
. So, that when you make 𝜇(𝑃) goes to 0 you are actually 

making n tends to infinity. We are actually making here n tends to infinity and if you 

make n tends to infinity then basically you are increasing the number of subintervals. 

And then in that case this in on every sub interval you are basically calculating the area 

of a rectangle. And if you sum all those areas and that will give you the area of the curve 



of the function f, between the points x=a to x=b. And that is what we mean by this 

integral on the right hand side. 

So, if you make 𝑛 → ∞ of this Riemannian sum then that will actually give you the 

definite integral or the integral of the function ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
 and this is the how to say the 

vital point which we wanted to make that how Riemann sum how this sum here is related 

to the definite integral. So, the proof of the theorem is a little bit complicated, but you 

can be able to find the proof in any standard integral calculus book where they have 

shown the proof with the help of upper sum and lower sum it is not that difficult and you 

can be able to go through that proof. However, for our lecture we would try not to get 

into those details, but just to give you an idea how Riemann sum is in related to definite 

integral that is what I was trying to do. 

Now, that is we know how Riemann sum is related to definite integral we will jump to a 

new or how to say a new result where we look into the condition of integrability. 
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So, condition of Riemann integrability, so we can formulate this in terms of another 

small result. So, theorem 2 and it says that; a necessary and sufficient condition for the 

Riemann integrability of a bounded function f is that for every 𝜖 > 0 there exists 𝛿 >

0 such that, for every partition P of [a,b] with ||𝑃|| ≤ 𝛿  we have U(P,f) which is our 

upper sum minus L(P,f) which is our lower sum is less than 𝜖. 



So, that means if you are given a bounded function f and if you would like to see whether 

that function is Riemann integrable or not then we have to calculate the upper sum and 

the lower sum. In the last class we have seen that how we calculate the upper sum and 

lower sum and if the difference of the upper sum and lower sum is less than this chosen 

𝜖, then in that case that particular function is said to be Riemann integrable. This makes 

sense because the upper sum U(P,f) if you take how to say the infimum of all the U (P,f) 

over the partition P, then in that case that will give you the upper integral sum. And if 

you take the supremum of all such L(P,f) such that now for this partition P then that will 

give you the lower integral sum and the difference basically we say that the function is 

Riemann integrable when the lower integral sum and upper lower integral sum and upper 

integral sum are same. 

So, basically if you say that the difference is less than 𝜖. That means, the function is 

Riemann integrable and your lower integral and upper integral are same. So, in a way 

this condition actually makes sense and based on which we can say that the given 

function is Riemann integrable or not. Next we have is several properties of Riemann 

integrable function so for example we know that if a function is bounded. And then if it 

satisfies this condition 𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) < 𝜖  then it is Riemann integrable, but other 

properties the function needs to have if you want to say that whether the function is 

Riemann integrable or not. 

So, we will look into a few properties and how to say some results related to Riemann 

integrable function.  
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So, let us go to the first property. So, I can write it as properties of Riemann integrable 

functions. So, the first property is or you can write it in terms of as theorem. So, the first 

property or the first theorem in this regard is every continuous function continue sorry 

every continuous function is Riemann integrable. 

So, this makes sense because every continuous function is always bounded and if the 

function is bounded then all we have to show that whether 𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) < 𝜖  or not 

and if it does then in that case the function is Riemann integrable. The proof is a little bit 

how to say well it is not long it is just that for the proof you can look into any book here I 

am just how to say listing some of the important properties of Riemann integrable 

functions. For the proofs I would recommend to look into the references which I have 

shown you in the first class and there you can be able to find the proofs of these 

theorems.  

The second property is if a function f is monotonic on [a,b] then it is Riemann integrable. 

So, I am hoping that all of you know what does a monotonic function mean. So, a 

monotonic function f a function f is said to be said to be monotonic. So, a function can 

be monotonically increasing or monotonically decreasing or it can be strictly increasing 

or strictly decreasing. So, here monotonically increasing on [a,b] if for if 𝑓(𝑥1) ≥ 𝑓(𝑥2) 

for 𝑥1 ≥ 𝑥2 where 𝑥1 and 𝑥2 are both 2 points in [a,b] monotonically increasing and 

similarly we can define the monotonically decreasing part. 



So, a function is said to be monotonically decreasing mono sorry so it is said to be 

monotonically decreasing if  𝑓(𝑥1) ≤ 𝑓(𝑥2)  for 𝑥1 ≥ 𝑥2 where 𝑥1 and 𝑥2 are 2 points in 

this interval [a,b]. So, here we can see that if a function is monotonic. So, let us assume 

that it is monotonically increasing on [a,b], then in that case of course, it is bounded. And 

if it is bounded then all we have to show is that whether  𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) < 𝜖  or not 

and then that will ensure the Riemann integrability. 

Similarly we can assume that the function is monotonically decreasing and if it is 

monotonically decreasing, then of course in that case also it will be bounded. And we 

again try to show that 𝑈(𝑃, 𝑓) − 𝐿(𝑃, 𝑓) < 𝜖 and then the function will become Riemann 

integrable. So, the proof of this theorem can also be found in those in those books which 

I have listed as reference next property is I can list it as let us say theorem 3. 
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So, if f is a Riemann integrable function on [a,b] and c is any arbitrary point between the 

interval [a,b] then f is Riemann integrable on [a,c] and [c,b] and we can write the integral 

∫ 𝑓(𝑥)𝑑𝑥 
𝑏

𝑎
as the sum of these 2 integrals. So that means, you can take as many points as 

you please in your closed interval [a,b]  and the sum of those integrals on each one of 

those sub intervals will be the integral of the how to say whole of the function f on the 

whole interval [a,b]. So, here not only c you can take as many points as possible in 

between that interval [a,b] and the result would still be true. Next theorem we have or the 



property we have is if a function f is Riemann integrable on the closed interval [a,b] then 

𝑓2 is also Riemann integrable.  

So, if you have and similarly you can continue, so if  𝑓2 is Riemann integrable and if 

then in that case you can be able to show that 𝑓3 or 𝑓4 they are also Riemann integrable 

so that means, this property carries forward. And again for the proof of this theorem I 

would recommend you to look into the references which I have mentioned. 

Next, as we have seen that for the Riemann integrability, how we can connect the 

Riemann integrability with Riemannian sum and how it is connected with the definite 

integral. We also saw that the necessary and sufficient condition for a function to be 

Riemann integrable and some properties associated with Riemann integrable function. 

So, we will stop this lecture at here. And in the next class we will again continue with the 

properties of Riemann integrable function.  

Thank you.  


