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Hello students. So, up until last lecture we lived into an inequality of this type, where we 

had the lower bound of a function f defined on [a,b] is less or equal to the lower bound 

on all the sub intervals, which is less than or equal to of course, the upper bound of the 

function f on all the sub intervals which is less than or equal to the upper bound of the 

function f on [a,b].  

Let us name this relation. So, let us call this relation as equation 1. Now, we define the 

upper sum of the function f corresponding to the partition P. As we write  

𝑈(𝑃, 𝑓) = 𝑀1(𝑥1 − 𝑥0) + 𝑀2(𝑥2 − 𝑥1)+.  .  . +𝑀𝑛(𝑥𝑛 − 𝑥𝑛−1) 

 So, you can write it as in the form  

∑ 𝑀𝑟(𝑥𝑟 − 𝑥𝑟−1)

𝑛

𝑟=1

 



So, this is our upper sum, similarly we can define our lower sum. The lower sum is given 

by L(P,f)  and you may have guessed it will be given by 

𝑚1(𝑥1 − 𝑥0) + 𝑚2(𝑥2 − 𝑥1)+.  .  . +𝑚𝑛(𝑥𝑛 − 𝑥𝑛−1) 

we can use the summation concept and then it can be written as  

∑ 𝑚𝑟(𝑥𝑟 − 𝑥𝑟−1)

𝑛

𝑟=1

 

So, these two are basically called as the upper sum and the lower sum. Now, you can see 

that each partition   

𝑃 ∈ ℘[𝑎, 𝑏] 

determines these two numbers U (P, f) and L (P, f) isn’t it. So, for every partition P we 

will be able to get these points 𝑥0  𝑥1  𝑥2  𝑥3 up to 𝑥𝑛 and based on those points we can be 

able to obtain our sub intervals 𝑥0  to  𝑥1, 𝑥1 to 𝑥2 and so on. 

And on each one of these sub intervals, we can be able to find our lower bound for the 

function f and the upper bound for the function f, mainly because the function f is 

bounded on [a,b]. And based on that upper bound and lower bound on all of those sub 

intervals we can be able to calculate the upper sum, which is given by  

𝑀1(𝑥1 − 𝑥0) + 𝑀2(𝑥2 − 𝑥1)+.  .  . +𝑀𝑛(𝑥𝑛 − 𝑥𝑛−1) 

and we can be able to calculate our lower sum, which is given by 𝑚1(𝑥1 − 𝑥0) +

𝑚2(𝑥2 − 𝑥1)+.  .  . +𝑚𝑛(𝑥𝑛 − 𝑥𝑛−1) 

So, each partition and this in this family of partitions will determine these two numbers 

U (P, f) and L (P, f), you can see that they are basically numbers because upper bound 

and lower bound are numbers and  𝑥1, 𝑥2, 𝑥3 are points on real line. So, basically the 

difference is also a number. So, ultimately we are obtaining two numbers with the help 

of this partition P alright. 
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So, now what we have is so from inequality 1 where is that let us go back to the previous 

slides ok. So, in this slide from inequality one we have  

                        𝑚 ≤ 𝑚𝑟 ≤ 𝑀𝑟 ≤ 𝑀 

 So, we will write that inequalities so,  

             

                          𝑚 ≤ 𝑚𝑟 ≤ 𝑀𝑟 ≤ 𝑀 

and we will multiply this whole inequality by  

(𝑥𝑟 − 𝑥𝑟−1). 

Let us multiply so, as I was saying that (𝑥𝑟 − 𝑥𝑟−1), they are both points on real line. So, 

their difference is also a real number basically. Now, even if you have a negative 

interval; that means [-1,-2] and if you divided into equal subintervals you will still get 

this difference as a positive. So, (𝑥𝑟 − 𝑥𝑟−1) is always a positive number and that is why 

when you multiplied the inequality here, this inequality sign did not change alright. 

So, next we will take the summation on both sides. So, this is true for every r running 

from 1 to n. So, if I take summation on both sides so, this will be 

∑ 𝑚(𝑥𝑟 − 𝑥𝑟−1)

𝑛

𝑟=1

≤ ∑ 𝑚𝑟(𝑥𝑟 − 𝑥𝑟−1)

𝑛

𝑟=1

≤ ∑ 𝑀𝑟(𝑥𝑟 − 𝑥𝑟−1)

𝑛

𝑟=1

≤ ∑ 𝑀(𝑥𝑟 − 𝑥𝑟−1)

𝑛

𝑟=1

 

 



So, here in this sum on the left hand side here, in this sum small m is independent of r, 

basically because small m is the lower bound on the whole interval [a,b]. So, it is not 

relevant to each one of those sub intervals. So, you can take that m out of the sub interval 

and then it will be basically  

𝑚 ∑(𝑥𝑟 − 𝑥𝑟−1)

𝑛

𝑟=1

≤ ∑ 𝑚𝑟(𝑥𝑟 − 𝑥𝑟−1)

𝑛

𝑟=1

≤ ∑ 𝑀𝑟(𝑥𝑟 − 𝑥𝑟−1)

𝑛

𝑟=1

≤ 𝑀 ∑(𝑥𝑟 − 𝑥𝑟−1)

𝑛

𝑟=1

 

also we take capital M out of the interval, because capital M is also independent of r.  

Now, here what we are basically doing we are basically summing the difference of all 

the sub intervals so; that means 

(𝑥1 − 𝑥0) + (𝑥2 − 𝑥1) + (𝑥3 − 𝑥2) +.  .  . 

.So, if we if we expand this summation then you will be able to notice that except  

𝑥𝑛 − 𝑥0 all other points cancels out. So, if you expand the summation, we will be able to 

see that and ultimately we will be left with  

𝑥𝑛 − 𝑥0. Similarly, here this term is defined as the lower sum L(P, f) if we look into the 

previous slide. So, here so L(P, f)  is defined by this sum here.  

So, we can write it as L(P,f) and this sum is defined as U(P,f) so, U(P,f). And here it is 

basically  𝑀(𝑥𝑛 − 𝑥0) 

. 
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And this (𝑥𝑛 − 𝑥0) we know that 𝑥𝑛 is our point b and 𝑥0 is our point a is less or equal to 

L(P,f) is less or equal to U(P,f), which is less or equal to M(b-a). 

So, here what we have is basically an inequality which is also important. So, this 

inequality says that your lower sum and your upper sum, will be bounded by m(b-a). So, 

basically the lower bound of the function f on [a,b] times the difference of the endpoints 

basically and the upper bound is M(b-a) which means that upper bound of the function f 

times, the difference of the endpoints will be an upper bound for your lower sum as well 

as the upper sum.  

So, this is the second inequality which we needed to establish, before we go to the 

Riemann integrable functions. Now, based on this we can define two numbers so, the 

first number is so, here we have two sets of real numbers. So, one is as we said every 

partition P determines U(P,f) and we have L(P,f) for every partition P in that family of 

partition [a,b].  

So, basically we have two sets of real numbers for every partition P in that family of 

partitions and the supremum of this set L(P,f) such that P is in ℘[𝑎, 𝑏]   is called as the 

lower integral of  f on [a,b]. And it is denoted by  

∫ 𝑓(𝑥)𝑑𝑥
𝑏

−𝑎

 

 we put a small minus sign here just to signify that it is a lower integral f(x)dx, or you 

can shorten it by   

∫ 𝑓𝑑𝑥
𝑏

−𝑎

 

 or we can even shorten it by 

∫ 𝑓
𝑏

−𝑎

 

So, when I write  

∫ 𝑓
𝑏

−𝑎

 

 it basically means that integral from a to b lower integral of course, f(x)dx. This is just 

one of the notations to save time in a way now that we have the lower integral we can 

also define the upper integral, for the upper integral lets go to the next page ok.  
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The infimum of the set of all those U(P,f) such that P is in  ℘[𝑎, 𝑏]  is called as the upper 

integral of f on [a,b]. And we can write this upper integral and it is denoted by  

∫ 𝑓(𝑥)𝑑𝑥
−𝑏

𝑎

 

 we put a dash sign or minus sign in the upper limit f (x)dx, or we can write it as  

∫ 𝑓𝑑𝑥
−𝑏

𝑎

 

, or to save time we can even write  

∫ 𝑓
−𝑏

𝑎

 

 So, based on the upper sum and lower sum, we can be able to define the upper integral 

and the lower integral, they are also sometimes called as upper Riemann integral and 

upper lower Riemann integral. 

Now, that the definition of the upper integral and lower integral are given and we have 

also given the notations, we can define the Riemann integrable function. So, definition a 

function f, or a bounded function f on [a,b] is said to be Riemann integrable if both  

∫ 𝑓𝑑𝑥
𝑏

−𝑎
 

and, 



∫ 𝑓𝑑𝑥
−𝑏

𝑎

 

lets follow one notation. So, I am removing this dx here so, lower integral and upper 

integral exist and they satisfy this relation 

∫ 𝑓𝑑𝑥
𝑏

−𝑎

= ∫ 𝑓𝑑𝑥
−𝑏

𝑎

 

So, the lower integral and the upper integral has to be equal, then such functions are 

called as Riemann integrable function and the common value of this is called the 

Riemann integral of f on [a,b] and it is denoted by  

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

 we can write it f (x)dx or we can shorten it like before simply by  

∫ 𝑓𝑑𝑥
𝑏

𝑎

 

 or  

∫ 𝑓
𝑏

𝑎

 

So, in order to talk about the Riemann integrability, you see that we had to first look into 

the concepts of partition that, how you get the partition of a closed interval, then from 

that partition we formed non overlapping sub intervals based on those sub intervals. We 

could be able to define those lower bounds and upper bounds not only for the function on 

the whole interval, but also on there was sub intervals. And for every such partition you 

will get a different type of non overlapping sub intervals and then you get different types 

of lower bounds and upper bounds on those sub intervals. 

Now, once we have those lower bounds and upper bounds, we were able to obtain the 

lower sum and the upper sum. And based on those lower sum and upper sum we can be 

able to obtain this lower integral and the upper integral. And if those lower integral and 

upper integral are same then in that case we say that the function is Riemann integrable, 

here the upper sum and the lower sum they depend heavily on what kind of partition you 

are choosing. 

So, for every partition P of this family of partitions, we can be able to obtain this upper 

sum and lower sum. So, these are basically two sets of real numbers depending on the 



partition P and based on those two real numbers, which is lower sum and upper sum we 

can be able to define the lower integral and the upper integral for the function f. 

And if those lower integrals and upper integrals are same, then in that case the function is 

said to be Riemann integrable and their common value; that means, when they are equal 

then that particular value is called as the Riemann integral of the function f on [a,b]. And 

we use a how to say a simplified notation in a way simply  

∫ 𝑓𝑑𝑥
𝑏

𝑎

 

So, this is just how to say a preparation to define the Riemann integral or Riemann 

integrable functions on [a,b]. We will look into now an example, where we will show 

that a function is Riemann integrable. Before I proceed any further I have provided you a 

list of references, we can where you can look into for the details the things which I am 

teaching. 

Most of a time I will try to follow my own lecture notes and sort of prepared my own 

lecture notes, which I will follow and I will also try to give you some examples based on 

the concepts which I am teaching and hopefully that will help. So, now we will look into 

one example, where we will show that a given function is Riemann integral or Riemann 

integrable or not.  
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So, let us start with example 1 so, statement let [a,b] be a closed and bounded interval in 

set of all real numbers  ℝ and c is any arbitrary point or number in ℝ. And let f mapping 

from [a,b] to R be defined as f(x)=c ∀ x in [a,b], then prove that f is Riemann integrable 

alright.  

So, we will look into the solution, before we start solving this problem. We first have to 

just gather the ingredient what do we need to show that Riemann integrability. So, we 

have to show that the lower integral is equal to the upper integral. Now, in order to 

obtain the lower integral or upper integral, we first have to obtain the lower sum and the 

upper sum. 

And before we can obtain the lower sum and upper sum, we first have to find out a 

partition for [a,b] based on that we have to find out the lower bound and the upper bound 

for this function f, on those sub intervals as well as on [a,b]. Here we are a little bit in 

luck because the given function is constant. So, for the constant function it does not 

matter what kind of partition, or what kind of points you were choosing the value would 

remain always the same so; that means, the lower bound and the upper bound would 

always be same not only on that closed interval, but also on those sub intervals as well. 

However, just to make things clear or the concept clear, we are going to solve this 

example.  

So, let us see first of all f is bounded on [a,b] and let us take a partition P of [a,b] as  

[𝑥0, 𝑥1].  . 𝑥 

 sorry so, {𝑥0, 𝑥1, .  .  . 𝑥𝑛} 

where  

𝑎 = 𝑥0 < 𝑥1 <.  .   . < 𝑥𝑛 = 𝑏 

and up; obviously, the sub intervals would be  

[𝑥0, 𝑥1], [𝑥1, 𝑥2], .  .  . , [𝑥𝑛−1 , 𝑥𝑛] 

And let capital M be the supremum of the function f(x) on [a,b] and small m is the 

infimum of the function f(x) on [a,b]. Similarly we define capital  

𝑀𝑟as the supremum of  f(x) on  [𝑥𝑟−1, 𝑥𝑟]  . And a small  

𝑚𝑟 as the infimum of the function f(x) on the interval  [𝑥𝑟−1, 𝑥𝑟]   , by the way if  I do not 

write  

𝑥 ∈ [𝑥𝑟−1, 𝑥𝑟] 

like the way, I have written here it always means that x is in [𝑥𝑟−1, 𝑥𝑟]   where r is 

running from 1 2 3. . . n.  



So, since f is a constant function its upper bound and the lower bound would always be 

same, not only that it will be same on that I mean on those sub intervals. 
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So, since f is a constant function our capital M, the upper bound is basically the constant 

c our lower bound on the whole interval [a,b] is again c our upper bound on each one of 

those sub intervals is c and our lower bound on each one of those sub intervals is again c, 

where r is running from 1 2 3 up to n. 

So, based on that I can calculate my upper sum U(P,f), which is basically  

∑ 𝑀𝑟(𝑥𝑟 − 𝑥𝑟−1)

𝑛

𝑟=1

 

 So,  

𝑀𝑟 is basically c so, c will come outside of the summation because it is independent of r. 

And here we will have (𝑥𝑟−1, 𝑥𝑟) . Now, again this is similar to what we did earlier. So, if 

you expand the summation, then you will basically have  (𝑥𝑛 − 𝑥0) left. So, we will have                     

(𝑥𝑛 − 𝑥0) 

left 𝑥𝑛  is basically our b and 𝑥0  is basically our a, similarly we can calculate our lower 

sum which is 

∑ 𝑚𝑟(𝑥𝑟 − 𝑥𝑟−1)

𝑛

𝑟=1

 

 this is 



𝑐 ∑(𝑥𝑟 − 𝑥𝑟−1)

𝑛

𝑟=1

 

 Similarly this will also give  

𝑐(𝑥𝑛 − 𝑥0) 

 And therefore, we will obtain    

𝑐(𝑏 − 𝑎)       alright. 

So, now let P be let us so,let us consider the set of all partition the set  

℘[𝑎, 𝑏]  of all partitions of [a,b], then basically it follows that, the set L(P,f), where all 

such P is in ℘[𝑎, 𝑏]. And the set U(P,f) where P is in  

℘[𝑎, 𝑏]  , I mean they are both basically how to say the singleton set 𝑐(𝑏 − 𝑎). 

Because it does not matter what kind of partition, you will choose since it is a constant 

function, we will always obtain 𝑐(𝑏 − 𝑎)   . And therefore, the least the how to say the 

supremum or the infimum that is the least upper bound or the least or the how to say the 

greatest lower bound, will be always 𝑐(𝑏 − 𝑎).  

So, like we are talking about the supremum of L(P,f) and infimum of U(P,f) 
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If we take for this these two sets actually, it will always be so, what I am trying to say 

supremum of all such L(P,f) such that P is in  

℘[𝑎, 𝑏]   ,will be  𝑐(𝑏 − 𝑎)   and infimum of all such U(P,f) such that P is in  

℘[𝑎, 𝑏]   is again  𝑐(𝑏 − 𝑎)   so; that means the lower integral. 



So, that is the lower integral and the upper integral are same which means  

∫ 𝑓
𝑏

−𝑎

= ∫ 𝑓
−𝑏

𝑎

= 𝑐(𝑏 − 𝑎) 

And since they have a common value which is basically  𝑐(𝑏 − 𝑎)  this is the Riemann 

integral of the function f on [a,b]. 

So, this means that 𝑐(𝑏 − 𝑎)  is the Riemann integral of f on [a,b]  where f is the constant 

function and it is denoted or we can just leave it like that. So, for this constant function f 

is equals to c we were able to show that this constant function is Riemann integrable on 

[a,b] for that of course, we needed to calculate the upper sum and lower sum which was 

basically 𝑐(𝑏 − 𝑎). And if we take the supremum of all such upper sum as sorry of all 

such lower sum and the infimum of all such upper sums. 

For all I mean how to say set of all these partitions, then you always get it has a 𝑐(𝑏 − 𝑎)   

We will always get it as c times b minus a. And since the lower integral and the upper 

integral is same, this common value is basically the Riemann integral of this function f 

on [a,b], we will look into one more example in the next lecture. And we will conclude 

today’s lecture on this example.  

So, thank you for your attention. 


