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So, welcome back and today again we will continue our discussion on these eigenvalues

and eigenvectors. This is lecture number 50 and we will mainly focus on iagonalization

and also it is applications for solving system of linear equations,  also for getting the

power of the matrices etcetera. So, what is the diagonalization of the matrix? We will

discuss here now.
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So, A square matrix A is said to be diagonalizable if there exists an invertible matrix P. If

there exists an invertible matrix P such that this P inverse AP is a diagonal matrix or in

other  words,  because  this  concept  we  have  already  introduced  the  similarity  of  the

matrices.

So, in other words if A is similar to a diagonal matrix, because if the point is here A is

called diagonalizable. If we can write down this A as this P inverse the P inverse AP is a

diagonal  matrix  then we call  that  this  A is  diagonalizable.  So,  the meaning this  A is

similar to the diagonal matrix here; AP inverse AP and this P is invertible matrix which

we have to find, so that this P inverse AP becomes a diagonal matrix.

So, let A be an n cross n matrix and that is a nice result that A is always diagonalizable;

that means, we can find such A P such that this P inverse AP is a diagonal matrix. So, the

result is here A is diagonalizable, if A has n linearly independent eigenvector. So, that is a

nice result here, nothing to do with this eigenvalues. Actually we have to look for the

eigenvector.  So,  if  we  get  n  linearly  independent  eigenvectors  then  A  can  be

diagonalized. And if we cannot get these n linearly independent eigenvectors then the A

is not diagonalizable. So, that is the main result of this lecture.

Again we will not go through the formal proof here, but we will see with the help of

many examples, how this is working. And another subsequence of this result we can we

can have here if n is an n cross n matrix here A and it has n distinct eigenvalues, then also

A is diagonalizable and then reason is clear, because if we have n distinct eigenvalues,



then we will also get n linearly independent eigenvectors; that is a result we have already

seen in previous lecture that corresponding to distinct eigenvalues we have a linearly

independent eigenvectors. So, eventually this second result here is again the same as this

previous one; that is diagonalizable, if and only if it has n linearly independent vectors.

So, just a note here that this matrix P which diagonalizes A is called the model matrix of

A and whose columns, I mean the point is how to find this A matrix P. So, here this

model matrix P has the columns that are nothing, but the eigenvectors corresponding to

these different eigenvalues. So, if you have n linearly independent eigenvectors, we will

just place them in this matrix P as the columns, and this is our matrix this P. And when

we check this P inverse AP that will be nothing, but the diagonal matrix and entries of

these diagonal matrix will be just the eigenvalues, corresponding to these eigenvectors

we have placed in the sequence as columns of this matrix P.
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So now here let us consider this example with A 5 4 and 1 2. So, here we will not spend

much of our time for computing eigenvalues and eigenvectors,  because that we have

already seen in previous lectures. So, we can compute the eigenvalues for this example

and then it comes to be 1 and 6, because the idea is simple that this 5 minus lambda and

then we have 4 and 1 2 minus lambda.

So, this determinant we have to solve which we can make this product here, the 10 and

then we will have here minus 2 and minus 5. So, minus 7 lambda and plus this lambda



square and minus 4 is equal to 0. So, this is lambda square minus this 7 lambda. And then

we have here 6 is equal to 0 and that can factorize to this minus 6 minus 1. So, lambda

minus 6 and lambda minus 1 is equal to 0. So, here we get these eigenvalues as 1 and 6.

So,  having  these  eigenvalues  now  corresponding  to  each,  we  have  to  find  the

eigenvector. And here we have indeed these distinct eigenvalues. So, we will get two

linearly independent eigenvectors and then we can diagonalize this matrix. So, here the

eigenvectors  corresponding  to  1  will  be  coming  as  this  minus  1  1.  So,  that  is

corresponding to this one, and corresponding to 6 we will get here 4 1. And now once we

have the eigenvectors we can formulate this model matrix which we call P. So, the P will

be we are placing these matrices are these vectors the eigenvectors as columns of this P.

So, here minus 1 1; that is the first column, and then this 4 1 that is the second column.

So, our model matrix is ready now and we can verify that how this P inverse AP A P look

like. So, here we have to get this P inverse also, that is the inverse. So, for 2 by 2 matrix

it is simple, so we have to divide here by this determinant and then we need to change

the sign and determined will be again with minus sign.

So, finally, we will get this as the as the P inverse of this matrix P which we can also

verify by multiplying these two and we are getting the identity matrix. So, here the P

inverse and if we compute this P inverse AP, so that is coming to be 1 6 in the diagonal

and it is a diagonal matrix and this is exactly the point here. So, we have kept in our

model matrix this, these vector minus 1 as the first column, and that was corresponding

to the eigenvalue 1 and that is the reason here this first eigenvalue is coming and in the

second case we have kept this second column which was corresponding to the 6 here and

therefore, the second element in the diagonal is 6 here. So, this order if we change for

instance the order here.

So, if we change it to P like 4 1 and minus 1 1. If we change, if we take this P, if we take

this model matrix then here P inverse AP when we compute, this will be 6 0 and 0 1,

because here this  was corresponding to  this  6  and then this  is  corresponding to  this

number 1 here. So, accordingly that order will change.

So, the order we place here for the eigenvectors corresponding order will be followed in

the diagonal entries as the eigenvalues, so that is important. Second point here which

also needs to be mention that this is not the unique eigenvector for instance; so, we can



multiply by any number to this minus 1 1 that will be also the eigenvector. Again here

also this 4 1 we can multiply by any scalar that will also be the eigenvector, because

eigenvectors are not unique and by doing so, also there is no problem we can keep any

vector here not only minus 1 and 1, we can also place for example, minus 2 and 2 here in

the first column.

And in the second column we can place for instance we multiplied by 2 here, so 8 and 2.

So, we can place 8 and 2 in the second column. So, does not matter that will be taken

care by this P inverse and still this product will give us the same diagonal matrix 1 0 0 6.

So,  here it  is  material  that  whether  we multiply  here to  these eigenvectors  by some

scalars;  it  does not matter  with this  P inverse AP will  lead to the same eigen, same

diagonal matrix whose entries will be 1 and 6. The only thing matter again it s the order

here we place these eigenvectors.

So, the order we keep here placing as these columns of these eigenvectors in the same

order these eigenvalues will appear.
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So, here another example of this 3 by 3 matrix 6 minus 2 2 and then we have minus 2 3 3

and minus 1 2 minus 1 3. So, for this matrix also if you want to check whether it can be

diagonalized  or  not  and what  will  be  the  diagonal  matrix?  What  will  be  the  model

matrix? So, for that we need to compute the eigenvalues. So, the eigenvalues for this

matrix will be coming 2 2 and 8.



So, again now for each eigenvalue we need to compute the eigenvector  to form this

model matrix P and the corresponding to this eigenvalues this 2 2 the repeated 1. So, here

the  algebraic  multiplicity  of  this  2  is  2  and  now  we  compute  the  eigenvector

corresponding to this. So, here this 2 minus 2 and minus 2, so that will be the matrix

there which we want to solve as the system of linear equations. So, by doing so what we

are actually getting here we are getting 3 linearly independent eigenvector meaning this

geometric multiplicity of 2 is 2 and also it is; as the algebraic multiplicity is 2, also the

geometric multiplicity in this particular case is coming to be 2.

So, this is corresponding to this 2 this is also corresponding to 2 and here we have this

corresponding  to  this  8.  So,  we  have  3  linearly  independent  linearly  independent

eigenvector and that is the reason now we can actually diagonalize this matrix because

we need 3 matrices. Remember it is easy to remember here the model P here the model

matrix P will be of the same order as A. So, we need this 3 columns to fill the matrix P.

So, if we have 3 linearly independent vectors we can form this P otherwise for example,

corresponding to 2 if it happens that we have only 1 eigenvector then we cannot form

this P in other words the matrix A is not diagonalizable in that case.

So, here the matrix A is diagonalizable because we are getting 3 linearly independent

eigenvector and the model matrix P here we will place this 1 to 0 minus 0 2. First two

columns and the corresponding to 8; we have this 2 minus 1 as a third column. So, this is

corresponding to 2. The first column this is also corresponding to 2 and this corresponds

to 1 the third column. So, our order will remain exactly this one and this will become the

diagonal entries of the matrix P inverse AP. So, if you compute the P inverse AP now.

So, we need to get this P inverse and then this product we have to make and then we will

get this 2 2 and exactly the order we have placed here these eigenvectors. So, we are

getting these diagonal entries absolutely the same here 2 2 8. So, that is the diagonal

matrix here which is similar to the matrix A and later on we will observe several good

properties about this matrix because they share many common properties these similar

matrices and some of the applications very important applications one we can once we

can diagonalize the matrix we can we can use them in many applications.

So, that will be the also topic of discussion of this lecture.
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So, the last example here we will take another one where we do see this is the lower

triangular matrix with entries 2 2 3 in the diagonals and then we have this 4 in the off

diagonal rest everything is 0. So, in this case if we compute the eigenvalues we know for

the triangular matrices. So, this is 2 2 3. So, the eigenvalues will be 2 2 and 3 and we

have to compute again the eigenvectors corresponding to the 2 and also corresponding to

this 3. What happens in this case that here this algebraic multiplicity of 2 is 2 and it

comes to be that the geometric multiplicity of this 2 is 1 and that is the point where

actually we cannot diagnolize the system because geometric multiplicity is not equal to

the  algebraic  multiplicity  for  this  eigenvalue  2  then  we  will  get  less  number  of

eigenvectors and we cannot form this model matrix P.

So, here the corresponding to these 2 eigenvalues the repeated eigenvalue we are getting

only 1 eigenvector and the reason is clear because if we formulate this equation A minus

lambda I x is equal to 0. So, what will happen here? We get this 0 0 0 and then we have

here 4 this again 0 0 and 0 0 1. This is the situation of this system of equation for the

eigenvector  here and the right  hand side 0.  So,  for  this  system of equation what  do

observer what do we observe here that we have the 2 pivots element here 4 and also this

1. These are the pivot elements and the free variable we have only one that is here x 2.

So, x 2 is free variable free variable; that means, we can choose this x 2 whatever we

like. So, let us take this alpha and then directly from these equations we have observe



that the x 1 is 0 from this second equation and from this third equation we observe that x

3 is equal to 0. So, the eigenvectors x 1, x, 2, x 3 in this case corresponding to this

repeated eigenvalue is coming to be 0 1 0 and any multiple of this 0 1 0.

So, that is here we have taken just alpha 1. So, this is one of the eigenvectors here and

then corresponding to 3 also we can compute the eigenvector and that is naturally it will

come 1 only. So, we have 2 minus 1 and 1. So, with these 2 vectors because we need 3

vectors to fill the positions of this model matrix P. So, we cannot do in this case because

we are getting 2 linearly independent eigenvectors and therefore,  this matrix A is not

diagonalizable. So, the given matrix is not diagonalizable.

So, what we have seen here that every matrix we cannot diagonalize. We can diagonalize

only those matrices when the eigen vectors the set of this eigen vectors is full means if it

is  a  n by n matrix  then if  we get n linearly  independent  Eigen vectors  then we can

diagonalize the matrix, otherwise we cannot diagonalize the matrix.
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Now, coming to the applications  of the diagonalization,  the first  application  we will

consider that we can easily compute the power of the matrices once we can diagonalize

the  matrix.  So,  why  so?  What  is  the  connection  here  or  to  the  to  the  eigenvalues,

eigenvectors that we will see now. So, this P inverse AP what we have seen that A can be

diagonalized then we have this relation P inverse AP is equal to D or we can rewrite it



that A is equal to so we multiply by P here first there will be PD and then the right side

we will multiply by P inverse.

So, we will get out of this relation here A is equal to PD and P inverse. So, having this

relation then if you want to multiply or we want to get this A power 2 or A square in that

case. So, we need to multiply this PDP inverse with the PDP inverse and then with this

associativity property of this product we will realize here that this P inverse, P is there

which we can put as the identity matrix and then we will get here P D and D P inverse

meaning this P and the power of this diagonal matrix. So, here the A square the power of

this  matrix  is  2  power  of  this  matrix;  it  is  coming  to  be  that  this  power  is  exactly

translated to the power of this diagonal matrix. What is the use here that this diagonal

matrix  we can easily  get this  power here because this  power will  directly  go to this

diagonal entry. So, we do not have to actually multiply these matrices D here for this

power, but only the diagonal entries will be squared and that is a reason here.

So, the A square is very simple now the PD square P inverse. So, we have to only do

these multiplications. Naturally when we have a high power here and not just for the two

because in any case now we have to do this multiplication PD square and also this with

the P inverse. So, here naturally the work is more if we just want to find out this power 2,

but in case for example, we want to power to get the power 1000 then definitely this will

be very very useful because D power higher power would be easier to compute. So, why

this A square is coming D square? We can continue this idea for example, A 3 also the

same similar structure will happen.

So, this PD square P inverse that is for A square and then again multiplied by A and this

P inverse P will again become the identity matrix and we will have PDQ P inverse. So,

what is the point here that we can see out of these calculations that A power n will be

also just D power n here and this PD power and P inverse. So, this will continue this

power here on translating to this matrix T. So, in general also we can prove that this A

power n is nothing, but the P D power and n P inverse. So, we can use as I said before

when we want to compute this very high power of this matrix a large number here and

then this is very very useful because D power n the computation here is very simple

because if we take 2 diagonal matrix for example, this here and we want to multiply with

the same.



So, what will happen now? So, if you multiply this a square will come and then this

product will be 0 here. Also this will be 0 and b square will come. So, what happens

when we do the product of the diagonal matrix just simply we will this power; this power

will go to the diagonal entries. So, we do not have to do this multiplication as the matrix

multiplication just simply when we have the power n. So, for instance we have this a 0 0

b and we want to get this power n there.

So, this will be nothing, but the a power n zero and b power n. So, that is the point here.

So, having this relation that A power n is nothing, but the D power n here. So, that is very

simple to compute and then finally, we need to make this product with the P and the P

inverse. So, that is the only computation load here for this matrix multiplication, but for

D power n only that linear relations here. So, these diagonal entries will be powered and

nothing else.
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So, let us just go through one example which says this find A power 5 for A is equal to 1

4  and  half  0.  So,  but  to  do  so,  we  have  to  compute  the  eigenvalues  and  also  the

eigenvectors, because we need that P and we also need that diagonal matrix. So, in this

case  the  eigenvalues  are  coming  to  be  minus  1  and  2  and  then  we  compute  the

eigenvectors corresponding to minus 1 it is 2 1 and corresponding to 2 it is coming as 4

1.  So,  having  this  we  can  now  form this  P  the  model  matrix  P. So,  placing  these

eigenvectors here as the columns.



So, the first column we have 2 minus 1 and the second column we have this 4 1. So,

having this model matrix now we can compute this P inverse again easily and then this A

power P as per our discussion in the earlier slide. So, we have this P and the D power P

and P inverse. So, we have to get this power of the diagonal matrix and then we have to

multiply by this P and P inverse. So, looking at this one, so we have this P inverse and

then this D; D was; so, what will be the D? We have the eigenvalues minus 1 and 1.

So, this D will become simply we have to place these eigenvalues in the order we have

placed these eigenvectors in P. So, this was the corresponding to 2 minus 1, the second

was  corresponding  to  2  2.  So,  therefore,  this  order  will  be  maintained  here  in  the

eigenvalue. So, that is the matrix this D here. So, the D power 5 is just minus 1 power 5

and this 2 power 5 which is here.

So, we can actually compute a very high power. Also the computational load will remain

the same. Only thing we have to we have to just do this power here of the diagonal

entries. So, and then later on we have to in any case just multiply by this P and the P

inverse. So, it is easy now to find having this relation any power of the matrix A. So,

here the A power 5 when we do this multiplication that is coming this 21 44 and this 5.5

and this 10. So, that is A power 5, but it is usually used when we really want to have we

want to compute a high power of this matrix A then this is computationally very very

efficient as compared to doing the product of matrices A.

So, here was the one of the applications where we use this eigenvalues, eigenvectors or

in particular this idea of the diagonalization of the matrix.
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Now, coming  to  the  next  application  which  is  the  solution  of  the  system  of  linear

differential equations though the differential equations will be the topic of the next few

lectures,  but  here  just  to  introduce  the  idea  of  this  or  the  application  of  this

diagonalization. We will be doing very simple example also. So, here we consider the

linear differential equations. So, here it is a system, system means we have a more than

one differential equations and their variables are coupled. So, here we have this; the left

hand side for example, this is the derivative term.

So, meaning that we have like this dx 1 dt and suppose we have two equations dx 2 over

dt and then right hand side some matrix is given here. So, a 1 1, a 1 2, a 2 1, a 2 2 and

then the variable here X 1 and X 2. So, we have these two unknowns for example, in the

system X 1 and X 2 and this is the system because the first equation of this system dx 1

over dt is having this X 1 and X 2. So, a 1 1 X 1 plus a 1 2 X 2 and the second equation

here is dx 2 over dt a 1 1 a 2 1 X 1 and plus a 2 2 X 2. So, we have basically these two

equations. These two are the differential equations we have the ordinary derivative.

So, these are the system of ordinary differential equations and these are coupled because

this X 1 and X 2 is percent in this equation 1 as well as in the equation 2. So, these are

the coupled equations  and they are not very easy to solve,  but with the idea of this

diagonalization it becomes very very simple as we will observe now here. So, what we



have to assume? We have to assume that this matrix A is diagonalizable; this coefficient

matrix here is diagonalizable. So, once we know that.

So, we know this relation that D is equal to P inverse AP. So, this D then this system here

which was the derivative  term of this  X is  equal  to  A is  replaced now by this  PDP

inverse. So, PDP inverse and the X the right hand side and what we do? We multiply this

to  P inverse  now. This  equation  to  where  P inverse  is  derivative  the  vector  of  the

derivative terms then we have DP inverse and this X term. Now this is just the coefficient

it is just the matrix here, which we have the model matrix.

So, these are just the constant they increase your P, they are the constant. So, we can

actually rewrite this P inverse and the derivative terms here are coming in this vector. So,

we can simply take the derivative of this P inverse X because these are the constant

terms. So, this will not matter for the derivative. So, we have collectively taken this as P

inverse X and the derivative right hand side PD and this P inverse this X and now what

we do we just substitute a new variable here we take for this P inverse X.

So, substituting this P inverse X is equal to Y a new variable. We have named the new

variable when we multiply this P inverse to X. We are setting this new variable Y and our

differential our system here which was this X dot is equal to AX t, which is now reduced

to this Y dot is equal to DY t. So, what is the benefit now; having from this system to this

system. Now do you notice that this t is the diagonal entries here now in the D and they

are the eigenvalues here are placed in this t.
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So,  the  benefit  here  that  our  system  the  reduced  system  is  that  here  we  have  the

derivatives  from the,  here we have this  diagonal  matrix  and then we have the y the

unknown. Now if we just look at this multiplication what we are getting? We are getting

these  n  equations  and  they  are  actually  decoupled  equations  now because  once  we

multiply this with the diagonal entries what we are getting lambda 1 y 1, the second entry

here lambda 2 y 2 and lambda n y n and here also we have these; the derivatives of y 1, y

2, y 3, y n.

So, we got here the i equation I mean n equations, but they are decouple now because the

for instance the first equation has only y 1, the second equation has only y 2, the third

equation is having only y 3 and the single equation this dy over dt is equal to lambda y

type equations we know how to solve because all these equations are of this type dy over

dt is  equal to yt and we know that the solution here that this  is y as some constant

exponential t. So, that is the solution of this equation y is equal to c exponential time t

and here we have all these equations which are no more coupled equation.

So, by this idea of the diagonalization we got this from the coupled system of equations

just these uncouple system of equations, which are easy to solve now. So, we will solve

these each question here the solution will be y i t is equal to C i and e power lambda i t.

So, the C isare this constant of integration. So, what do we get? We have the P inverse X

t that was the our substitution which we have made for Y and now we got the vector Y.



So, from there we can indeed get this X again back because our main variable in the

given system was X or we can write down this in this expanded form.

So, this X was having these n components x 1, x 2, x 3, x n. Here this is P the vector P;

the vector P here is having the columns as the eigenvectors right. So, here the d was the

diagonal matrix whose entries were lambda 1, lambda 2, lambda n and here we will get

the corresponding eigenvector. So, v 1, v 2 and this v 3 and so on and then we will get

this v n. So, these are the corresponding eigenvectors of these eigenvalues lambdas. So,

this was the model matrix here.

So, then we can do this product as well. So, this product with the Y t. So, here we have

basically y 1, y 2, and y n t whose value also we know that C 1 e power lambda i t. So,

this  matrix  vector  product  we  can  take  as  the  first  column  multiplied  by  this  first

element, the second column multiplied by the second element and so on. This is what we

have written here for Y we have substituted this C 1 e power lambda 1 t, here C 2 e

power lambda 2 t, C n e power lambda n t.

So, what is the final remark here that we need to compute the eigenvalues of the given

matrix A and also the eigenvectors and then we can write  down finally, the solution

directly that the constant terms the first eigenvector a corresponding to this lambda 1. So,

e  power  lambda  1  t,  this  eigenvector  corresponding  to  lambda  2,  eigenvector

corresponding to  lambda n.  So,  what  we have  to  do? We have to  compute  the;  this

original coefficient matrix A which was given for the system of equations. We need to

just  compute  the  lambdas  and the  eigenvalues  eigenvectors  and then  we can  find  a

solution.
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So, just to demonstrate this we have taken the simple example here. We can rewrite in

the system form here. So, dx 1 dt, dx 2 dt we can write down in this vector form this

coefficient matrix 3 2 7 and minus 2 and this x 1 x 2. So, what we have to do? We have

to just compute the eigenvalues and eigenvector of this matrix here.
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So, the eigenvalues of this matrix are coming as when we write down this characteristic

polynomial we are getting this minus 4 and 5 as the eigenvalues and the corresponding

eigenvectors we are getting here 2 7 and 1 1.



So, 1 1 is corresponds to 5 and minus 4 and corresponds to this 2 and minus 7. So, now,

we can write down the solution directly in terms of the eigenvalues, eigenvectors. We

have the constant term we need to put this eigenvector and e exponential  power this

lambda t, again the second constant, the second vector and exponential 5 t.
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So, what we have seen here that with the help of this diagonalization; this was very easy

to solve such a system, and the conclusion here is that this diagonalization of the matrix

we have learnt, and in particular we have seen these two applications, the power of the

matrices, we can easily compute with the help of this idea and also the solution of the

system of linear differential equations we can compute with this diagonalization.
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So, these are the references we have used and thank you for your attention.


