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Lecture – 05
Taylor Polynomial and Taylor Series

Welcome back to the lectures on Engineering Mathematics-I and today’s we will learn

Taylor’s Polynomial and Taylor Series.

(Refer Slide Time: 00:22)

So, these are the topics you will cover will start with the Taylor’s polynomial and then

coming back to this Taylor series from the Taylor’s polynomial and some worked out

examples.
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So, this Taylor’s formula which is a generalization of the mean value theorem or the

Cauchy's mean value theorem which we have learned in the last lecture. So, we assume

that the function here f has all the derivatives up to the order n plus 1.

In some interval which contains the point x is equal to x 0. Having this we wish to find

this polynomial P n x of degree n, with the conditions that this polynomial satisfies that P

n x polynomial at x is equal to 0 is equal to the function value at 0. Second: that the first

derivative of this polynomial is equal to the first derivative of the function. The third

condition the second derivative of this polynomial at this point x 0 is equal to the second

derivative of the function at the x 0 and so on.

So, what we assume basically that all these derivatives, the function value itself the first

derivative, the second derivative, and n-th derivative they all are equal to this derivative

of  the  polynomial.  So,  having  these  conditions  what  do  we  expect  from  such  a

polynomial? We expect such a polynomial if we construct then there should be close to

the function f naturally at x 0 function value is 0. So, at x 0 several so the derivatives of 2

order n are equal. But in general also we expect that because of these conditions that this

polynomial of degree n and somehow in some form will represent the function f.

So, now the question is how to construct such a polynomial.
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So, we assume here a general polynomial of degree n. So, we take that c P n x is c 0 and

c 1 x minus 0 c 2 x minus x square c 3 x minus 0 cube plus c n x minus x 0 n. So, in this

is special form we have taken this polynomial because of the convenience to evaluate

these unknown c 0 c 1 and c 2, but one can also assume any general polynomial of

degree n. So, now we want to find these coefficients c i’s based on the conditions which

we have set or we wish to have that this up to n-th order derivative of this polynomial at

the point x 0 must be equal to the respective derivative of the function at the same point

x 0.

So, having this condition first we know that the first derivative of this polynomial here is

equal to. So, once we this is a constant so this will be equal to 0 and then we take the

second term which will be having here x there so we will get the c 1 out of this. Similarly

from here we will get 2 time c 2 and x minus x 0 then we will get here 3 time c 3 and so

on.

Then if we move further, than the second derivative, so out of this first derivative we can

again differentiate this you will get 2 c 2 here 3 times tool to c 3 and so on and then we

can repeat this process further to get the n-th order derivatives. In n-th order derivative

because this was n-th order polynomial we will get only a constant term which will see

here the factorial n and the coefficient the c n will come in the expression here and there



will be no x term present here because, the polynomial was degree and then we have

differentiated end times.

So, having this what we get out of the first condition when we substitute because, our

conditions is the polynomial value at x 0 must be equal to the function value at x 0 and

further derivatives upto order n. So, from the functional value we will get here P n x 0

and is equal to all these terms will vanish and we will get only c 1. So, P n; sorry from

the from the polynomial itself when we substitute x is equal to x 0 we will get c 0 as P n

x 0 and P n x 0 is an f n x 0, so we get the c 0 as f x 0 over here.

The second when we substitute in this first derivative so you will get c 1, as the first

derivative of the function the c 2 again from this condition so we will get the second

derivative at x 0 divided by this factorial; sorry to factorial 2 here and then the c n will be

the n-th derivative at x 0 divided by factorial n.
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So, having these coefficients now what we have we have the polynomial, the polynomial

says that  this  P n x will  be f  x 0 which was c 0 there and all  these co efferent  are

substituted here, so this is what we call the Taylor’s polynomial of order n.

Now if you go through the example here and construct the Taylor’s polynomial of the

exponential function for example, e power x around x is equal to 0. So, the P 0 x the

degree 0 polynomial only the first term will be present there and e power 0, so e power 0



will be just 1. So, the polynomial of degree 0 will be simply 1. And if we plot this, so this

is the green plot here of the exponential function and this polynomial of degree 0 is just a

constant line; so the straight line going through this 0 1 point. And if we compute the

polynomial of degree once we will get this f x 0 as 1 and then we have the derivative

here e power x the derivative will be e power x and then at x is equal to 0 this will again

1.

So, we have the polynomial of degree 1 as 1 plus x which is plotted here. So, it is again

the straight line with slope 1. And now if we continue this process we can evaluate P 2

then P 3, so P 3 again we have plotted here with this curve and then going further so we

will get like P 5.

So, for example, if we plot here P 5 then this P 5 if you see it is pretty close to the

exponential function in a very wide range of or in a wide interval around this point 0

which was the point of this expansion here. And if we move further for the polynomial of

degree 6 or 7, then we will be moving closer to the exponential function in the cid of the

Taylor’s polynomial. So, by increasing the degree of the polynomial we can approximate

our function as good as we like and we will discuss on these further.
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So, what is the relation of the Taylor’s polynomial and the function. That means, because

this Taylor’s polynomial representing the Taylor functions to some approximation. So

now, we will denote this R n x as the difference between the values of the given function



and the constructed polynomial P n x. So, in this case what we mean this the R n x we

define this difference of the function and the polynomial P n x. And in this case now the

R n x is called the remainder, because this is the difference between the actual value of

the function minus the polynomial value at the point x.

So, now the question is the how to evaluate this R n x and to go further for the evaluation

we first note that the R n at x 0, because f x 0 minus P nx 0 and by construction this

polynomial at x 0 is equal to the function value at x 0 so this is 0, and the first derivative

the same thing. So, the first derivative of a f at x 0 is equal to the first derivative of the

polynomial at x 0 this was the construction of this polynomial. So, all these n-th order

derivative are equal, so in this case therefore this R n at point x or the first derivative at

point x naught the n-th derivative at point x naught all are equal to 0.
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So, we have these conditions R n x, now we consider another function here which is g x

which is g x x minus x 0 power n plus 1. So, this function has also the property if we

notice this that g at x 0 will be 0 in fact the first derivative, because n plus 1 and x minus

0 power n that will also become 0 at the point x 0 and so on. So, we can continue this

differentiation here up to the n-th order and all these derivatives at point x 0 will be 0.

So, what condition we have now that g the case order derivative at x 0 is equal to 0 up to

the order n and g n plus 1 is nothing but the factorial n. So, we have 2 functions one is R



n x and another one is g x they have similar properties here that all these derivative of to

order n they vanish.

So, in this case if it take to x point in the interval and suppose that x is bigger than x 0 we

can also assume that x is less than x 0.  And now we apply the Cauchy mean value

theorem for these 2 functions the rn function and the g function in this interval x 0 to x

and now remember what was the Cauchy mean value theorem that you have this function

R n x minus the R n x 0 divided by g x minus g x 0 is equal to their Deriratio of their

derivatives at some point phi one and g prime at xi 1. Now if he noticed that R n at x 0 is

0 and also the g at x 0 is 0, so we have this resolve that are R n x over g x is equal to the

ratio of their derivative at some point xi 1 in this interval x 0 and x we can continue this

process.
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So,  further  if  we apply again  the Caushy mean value theorem for the derivatives  rn

derivative and g derivative in the interval x 0 and xi 1. So, what we will get we will get

because this first derivatives are also 0. So, simply we will get the result that the R n x

divided by g x is equal to the R n double derivative over the double derivative of g. Now

the sum point in between this interval which we have considered from x 0 to xi 1. And

now we can continue this process further for the next derivative supplying this Cauchy's

mean value theorem further what you will get we can go up to the n plus 1th derivative

because, up to n-th derivative R n and g both are 0.



So, we will end up with this term and then here the xi n plus 1 lies between x 0 and the xi

n and there was a continuity up to x there. So, what we get out of this R n x is equal to

this R n (Refer Time: 13:25) plus 1th derivative divided by this g n plus 1 the n-th this

here the n-th derivative of this g n plus 1th derivatives was the factorial n plus 1. So

therefore, this factorial and plus 1 term came here and then we have this gx which was

the function x minus x 0 power n plus 1 and the xi which is introduced here xi n plus 1.

Now we have replaced by xi it lies somewhere between this x 0 and the point x, so which

is written here the xi lies between x 0 and x.
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So, now we note that these R n x which we have define that was the difference between

the function f  x and P n x.  So,  if  you take the n plus 1 and derivative here of this

reminder term the n plus 1th derivative of this a f minus the n plus 1th derivative of this p

is equal to the n plus 1th derivative of x because the n plus 1th derivative of n and P n

was the polynomial of degree n. So, if we take the n plus 1th derivative this term will

become 0 and we have these R n n plus 1 x is equal to f n plus 1 x. And now we can

substitute in our formula which was the R n plus 1 here, so we have substituted now this

value of this R n plus 1 as f and plus 1 xi.

Well now, we got the polynomial here which is the remainder term the R n x which is the

LaGrange form of the remainder, this time we can also we write this remainder form in

this form. So, this xi which appear there we have just replaced by this x 0 plus theta x



minus x 0 this theta lies from 0 to 1. So, here if theta is close to 0 then this argument here

is moving to x naught when theta goes to one this argument here goes to simply x. So,

this argument of this f lies between x 0 and x, so it has the same similar meaning what

the other form has. So, we can we write this LaGrange form of the remainder in this form

as well.
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The  Taylor’s  theorem  or  the  Taylor’s  formula  now  if  you  summarize  we  have  the

function f x which can be expanded in this form of f x 0 f prime x 0 x minus x 0 up to the

this n-th order term and plus this reminder term which we have just derived as this form

which is called the LaGrange form of the reminder.

So, in the special case when we take n is equal to 0 so that means, this up to the order

one we have to write this reminder term. So, we get this f prime xi divided by factorial 1

and then we have this x minus either way or x 0 whatever we consider. So, then this x the

xi lies between this a and x. And in this case we get this form of the Taylor’s theorem

which was which was the LaGrange form mean value theorem. So, this is a special case

of the mean value theorem which we have seen just by putting n is equal to 0 in this case.
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Some remarks so if we set x 0 is equal to 0 point of expansion in this Taylor’s formula

then it is called the Maclaurin’s formula and in the Taylor’s formula if it is reminder goes

to 0 as n goes to infinity, so this is an important remark here. If this reminder goes to 0 as

n goes to infinity then we can write down that Taylor’s formula in the form of the series

so f x 0 and so on you can continue for infinite term and this is called the Taylor series.

So, for x is equal 0 if we said this x 0 is equal to 0, then this is called the maclaurins

series.
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So, what we have seen this last remark again, so it is necessary and sufficient for the

convergence of the Taylor’s or the maclaurinseries that R n x goes to 0 as n goes to

infinity. Because they are examples of smooth function series. So, smooth means we

have the derivatives of whatever or we lie, but the Taylor series diverges everywhere

rather than the point of expansion, because a point of a expansion the series will have the

value same as the function as per the construction so. And there are the example (Refer

Time:  18:35)  of  this  smooth  functions  whose  Taylor  series  converges  to  some other

function and for instance you take this example fx is equal to e power 1 over x square

and the 0 here.

So, x not equal to 0 and x is equal to 0 so in this case one can easily show that (Refer

Time: 19:01) at 0. So, if we take the derivative of this function here e power minus one

over x square which I am not doing this calculations, but one can easily compute at all

the derivations of any order of this function at 0 will be 0 and then we if we write the

Taylor series or other maclaurin series around x is equal to 0 then we will get because all

the derivative are 0.

So, you will get 0 plus 0 into x 0 into x sqaure and so on. And then what we see here

whatever x we keep the maclaurin series is giving 0. That means, the series converges

whatever x the series is just 0, but it does not convert to the function of the function was

for x not equal to 0 e power minus 1 over x square. So, it is very simple example where

we can see that these maclaurin or Taylor series they do not converge to the function.
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Now, let us just take this example of the maclaurin series of e power x now again not

that.  So,  whatever  derivative  we  take  for  this  function  exponential  it  is  just  the

exponential x and at 0 we have the value 1. So, for all values of n all the derivatives of

this function exponential  function is 1. So, we can easily write down this maclaurins

series theorem that exponential x is equal to 1 plus x plus x square by factorial 2 all the

derivatives are 1.

And x n power factorial n plus R n x; so the R n x is the remainder term which we have

just seen the remainder term is x minus x 0 power n plus 1 divided by the factorial n plus

1 and the n plus 1th derivative at some point which is x 0 plus theta x minus x 0. So, here

if we substitute this x 0 is equal to 0 then we get this reminder x power n divided by

factorial n and e power theta x and theta is between 0 and. So, one now you will see what

happens to this R n x as n goes to infinity.

If this is the case if R n x goes to 0 as n goes to infinity, then we can write down the

Maclaurin  series  of  exponential  function  x.  So,  here  again  we  note  that  this  is  the

Maclaurin’s theorem. So, if this term goes to 0 as n goes to infinity, in this case we can

write down this exponential function as a series. So, we can remove this R n x and then

we can continue with the further terms as a series.

So, let us just check.



(Refer Slide Time: 22:04)

So, this is the R n x the remainder term x power n plus 1 divided by this factorial n plus 1

the exponential theta x and if you take the absolute value of this remainder term as x

power n plus 1 over n plus 1 factorial e power theta x, then we notice that this e power

theta x for whatever given x this will be a finite quantity. So, this will not disturb because

there is no n term here. So, if we can now focus on this term that what will happen when

n goes to infinity.

We should notice that when x when n goes to infinity. So, this becomes infinity and here

whenever this x is for example, large number greater than 1, then this term is also going

to infinity. So, we cannot simply say that what will happen to this term when n goes to

infinity. So, we have to carefully check this limit that what will happen to this term when

n goes to infinity. So, what we consider for a fixed value of x, we can always whatever x

as could be very large number, but we can find a natural number n such that the absolute

value of this x is greater than n.

So, whatever x we take here, then this n the big N we take greater than the absolute value

of  this  x.  Having this  we will  also  consider  one more  n  the  small  n  term which  is

appearing there in the formula. So, which is a bigger than this number n as well. Now we

consider this term modulus x power n plus 1 over factorial n plus 1 factorial n plus 1; this

factorial n plus 1 is the product of 1 plus 1 and upto one and the we have here modulus x

power n plus 1.



So, we can write down in the form of the product as. So, factorial x divided by 1 factorial

x again divided by 2 and so, on we can continue now just look at this term here which

have appear after this N minus 1 term. So, modulus x divided by n here also this absolute

value x divided by N plus 1 and so, on. So, this term here absolute value of x divided by

n. So, out of this expression what we see? The absolute value of x divided by this N is

less than 1 and now if we assume if we assume this as a number q. So, we have a q here

and this is in fact, divided by N plus 1. So, this is less than q and all other terms hear less

than q.

So, again you note that this n was bigger than N. So, we have gone up to this N plus 1

term. So, this with this N will be somewhere in the middle and now this q what we have

notice because the absolute value of x divided by N is less than 1. So, what we see now

we can replace this equality by the inequality. So, less than equal to because here we

have replace by q and this one is also replace by q though it is a less than 1 q this is also

less than q all these terms are less than q.

So, now how many q’s we have here. So, N minus 1 terms are already there and then the

total terms were n plus 1. So, if we can re write now the total term n plus 1 and already

these terms are n minus 1; so n plus 1 minus N minus 1. So, this number here is n minus

n and minus 2 and modulus as n minus 1 over factorial n minus 1 and now we can take a

limit here in this case and q is less than 1 and when n goes to infinity. So, this n goes to

infinity this n here it goes to infinity and q is less than 1 then this goes to 0 and here

some fixed number is appearing. So, this everything goes to 0.

So, this absolute value of this remainder term which goes to 0; so what we have seen that

this reminder term which was a part of the remainder term is less than which term which

goes to 0 as n goes to infinity and we can conclude that the remainder goes to 0.
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So,  these  are  the  references  which  were  used  for  preparing  these  lectures  and  the

conclusion.
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So, what we have learnt today is the Taylor’s formula and very important topic in the

differential calculus. So, a function which is smooth enough we can write down as f x 0 f

derivative x 0, x minus x 0. So, on plus this R n x term which is called the remainder

term, and this is one form of the remainder term f power n-th plus 1 derivative divided

by 1 plus 1th factorial x minus 0 n plus 1. And what we call this the polynomial term we



call the Taylor’s polynomial, the whole resolve this is called the Taylor’s formula. And

then we have also observed that when R n the remainder term goes to 0 as n goes to

infinity, then we can write down this Taylor’s formula as in the terms of a series which is

called the Taylor series. So, that is all.

Thank you for your attention.


