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Welcome back, so this  is  lecture  number 49 and we will  be talking about today the

geometric and algebraic multiplicity and the similarity of matrices.
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So, what is the algebraic multiplicity? So, algebraic multiplicity of lambda as a root of

the its a multiplicity of lambda as a root of the characteristic equation. And the geometric

multiplicity is nothing but, the dimension of the eigenspace of lambda; that means, the

number of linearly independent eigenvectors corresponding to an eigenvalue lambda.

So, these are the two numbers which we will now use for telling about the multiplicity of

this lambda, because we have seen in several examples the characteristic, roots all the

eigenvalues were repeated. So, that we can now quantify with the help of this algebraic

multiplicity; so, algebraic multiplicity if for instance one root is repeated 3 times. So,

then it is algebraic multiplicity of that particular root is 3 and the geometric multiplicity

will be the dimension of the eigenspace or the number of linearly independent vectors we

have corresponding to that particular eigenvalue lambda.

So, with these two classification we will move further, but before that there is a note

here,  that  this  geometric  multiplicity  is  always  less  than  or  equal  to  the  algebraic

multiplicity, that is a important result which one can formally prove. But, it is it requires

little more knowledge of a diagonalization etcetera.

So, we will  not prove this  result  now, but we will  keep in  mind that  this  geometric

multiplicity is always less than or equal to the algebraic multiplicity. Meaning that for

example,  one a particular root; one particular eigenvalue is repeated 3 times than the

corresponding geometric multiplicity meaning they are number of linearly independent

eigenvectors cannot be more than 3, they have to be less than or equal to 3.
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So, first we will see with the help of many examples that what are the situations arises

here. So, in this case we find the eigenvalues and the eigenvectors of this matrix A which

is given as a 6 minus 2 and 2 here of minus 2 3 1 and 2 minus 1 3. So, for this eigen, for

this matrix we will compute the eigenvalue and eigenvectors we have already computed

for  several  matrices  in  the  last  lecture.  So,  we  are  on  now  the  familiar  with  the

computation of the eigenvalues.

So, here first we need to write down the characteristic equation for this given matrix

which is the determinant of this A minus lambda I, determinant of this matrix A minus

lambda I is equal to 0 and for this matrix we can compute this determinant here. So, the

determinant would be like the 6 minus lambda minus 2 2 and then minus 2 here 3 minus

lambda and minus 1 2 minus 1 3 minus lambda. So, this lambda would be subtracted

from the diagonal entries.

And with this now we can expand this, so here the 6 minus lambda and then we have this

product minus this, then we will take this 2 then, minus 2. So, with this value of this

determinant  here  which  will  be  coming  as;  when  we  do  the  factorization  of  this

polynomial that will become 2 minus lambda lambda minus 2 and the lambda minus 8.

So, I skip this portion here because in this lecture that is not important, we have already

seen for several examples in the last lecture.
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So, what we have? We have this characteristic  equation of this matrix  here as this 2

minus lambda lambda minus 2 and lambda minus 8 equal to 0. So, what we observe now

that there are two distinct eigenvalues and one is repeated 2 times so; that means, the

lambdas are the 2, 2 and 8. So, this eigenvalue 2 is repeated 2 times and this 8 is repeated

1 times, and exactly that is what we have discussed about this algebraic multiplicity.

So, the algebraic multiplicity of this lambda is equal to 2 this eigenvalue 2 is because it is

repeated 2 times here. So, that I the algebraic multiplicity of this 2 is 2 and the algebraic

multiplicity of 8 because this is repeated only once. So, here the algebraic multiplicity of

this lambda is equal to 8 is 1. So, this is how the algebraic multiplicity and the geometric

algebraic multiplicity is defined to define the geometric multiplicity corresponding; to

lambda is equal to 2 or lambda is equal to 8, we need to get the eigenspace of these

vectors of these eigenvalues.
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So, the eigenvector corresponding to this lambda is equal to 5. So, remember this lambda

is equal to 8 was repeated once. Though, we have already the result that the eigen the

geometric multiplicity cannot be more than 1 now in this case, because the algebraic

multiplicity of this lambda is equal to 8 is 1. So, without calculation of the eigenvectors

as well we can claim that the geometric multiplicity will be 1, because definitely there

will be one linearly independent eigenvector corresponding to this lambda is equal to 8.

So,  there  cannot  be  two linearly  independent  eigenvectors,  that  was  that  result  says

where we have  that  these algebraic  multiplicity  is  always bigger  than the geometric

multiplicity. So, here we know though beforehand that this there will be there cannot be

two linearly independent vectors, it has to be only one because the algebraic multiplicity

of this lambda is equal to 8 is 1.

And it had it just must to have at least 1 eigenvectors because that is what the foundation

says so, we have already this a minus lambda I and the determinant is equal to 0 we have

non-trivial solution always. For this equation here A minus lambda x is equal to 0. So,

there will be definitely one linearly independent eigenvector, but there cannot be two this

is what we will see in this case as well. 

So, here this is a minus lambda I; so, this lambda means 8 here was subtracted from the

diagonal entries of A and then we have x 1 x 2 x 3 and the right hand side this 0 vector.

So, we can reduce to this echelon form this matrix and so, 2 minus 2 2 first row as it is



and then here we can subtract this. So this will be 0, when you subtract will be minus 3

and this is minus 3 and here also we can add in the first step. So, this will be 0, this will

be minus 3 and this will be minus 3 and then in the second step again with the help of the

second column.

So, in the first step what do we get, it is like minus 2 minus 2 2 and then here we have 0

and then minus 3 and minus 3 here we get when we add row 1 and row 3. So, we will get

0 well get minus 3 and minus 3. So, again with the help of the second row, we can now

get actually get rid of this number here minus 3, but this will also become 0 together. So,

this is the situation, this is the row reduced echelon form for the system of equations for

this matrix. 
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And now, we observe here that this is the pivot element and here also we have the pivot

element. So, the first two columns have pivot element that third column does not have

pivot element. So, that corresponds to this x 3 component of this vector and which we

can take as the free variable. So, there will be only one free variable which was clear

from there also because the algebraic multiplicity was one and corresponding to that we

cannot get two free variables. So, the number of free variables tells about the number of

linearly independent eigenvectors.

So, here we cannot have two linearly independent eigenvector. So, we know in advance

that there will be only one free variable in this case, there cannot be two free variables.



So, this x 3 is the free variable which we can choose again as as alpha; having that alpha

we can compute the x 1 and x 2 in terms of of alpha.
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So, then we can write down this solution of this equation x 1 x 2 x 3. So, here this x 3

was taken as alpha and x 2 comes to be from here the minus of x 3. So, we got this minus

alpha and from this equation number 1, we will got this two time; we will get this 2 times

alpha, this vector here x 1. So, we have this alpha not equal to 0 and alpha belongs to this

real number we can take any real number here. So, this is for any alpha not equal to 0

these are the eigenvectors. And basically the dimension of this eigenspace is one or in

other words we got only one linearly independent eigenvector which we can take for

instance this is 2 minus 1 1.

So, that is the only one eigenvector which is linearly independent, any other eigenvector

which we get out of taking this value alpha where they are the dependent eigenvectors on

this 2 minus 1 1. So, in this case we got only one linearly independent eigenvector and

therefore, we say that the geometric multiplicity. The geometric multiplicity that is the

number of linearly independent eigenvectors corresponding to a given eigenvalue here

the lambda is equal to A. So, the geometric multiplicity of this lambda is equal to 8 is 1.

So, here that is the number of linearly independent eigen vectors.
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When we come to this eigenvalues lambda is an; eigenvalue lambda is equal to 2 and

remember it was repeated 2 times meaning the algebraic multiplicity of this lambda is

equal  to  2  was  2.  So,  in  this  case  we  have  the  possibility  that  the  corresponding

eigenvectors the corresponding linearly independent eigenvectors there may be 2, I mean

at most 2, but there may be 1 as well,  we do not know now in advance we have to

compute them.

Because, looking at this eigenvalue we cannot just tell how many eigenvectors will be

linearly  independent  corresponding to  a  given eigenvalue,  but  what  we can tell  now

because the multiplicity of this 2 was 2 or the algebraic multiplicity was 2 and we know

that the geometric multiplicity will be less than or equal to 2. So, we know now that the

number of linearly independent eigenvectors could be 1 or it could be 2 also now in this

case.

So,  like let  us  compute this.  So,  this  a  minus lambda I  when we subtract  from this

diagonal  entries  this  number  lambda.  So,  we  get  this  equation  the  system of  linear

equation and then by reducing to this echelon form. So, indeed these two rows are the

same. So, we can set one of them equal to 0 immediately and out of this first row again

because it is half of this is again when we add to this row number 2. So, this will become

0 and similarly row number 3, if we subtract half of the row number 1 this will also



become 0. So, this is here the operation we have taken that the R 2 is nothing but R 2

plus half of R 1 and here for R 3 we have taken now the R 3 and minus the half of R 1.

So, with this two operations; two elementary operations we have written got this row

reduced  echelon  form of  this  system of  linear  equation.  And then  and  now we can

identify that how many linearly independent eigenvectors we are going to have in this

particular case.
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So, here this is the pivot element which is minus 2 in this case and the column number

two does not have a pivot here also we do not have pivot. So, there is only one pivot that

is in the column number 1.

So, here x 2 and the x 3; x 2 and x 3 will be will be free variables so, there will be free

variables now free variables. So, we can assign any value to them; that means, we are

going  to  have  now two linearly  independent  eigenvectors  because  a  number  of  free

variables decide exactly how many linearly independent eigenvectors we will get. 
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So, in this case we will get two linearly independent eigenvectors, and that is what we

write. So, here x 2 is taking alpha 1, x 3 is taken as alpha 2 and then we have computed

this alpha 1 from; this x 1 from this equation number 1 when we write in the vector form

as this alpha 1 we have this half and 1 0, alpha 2 a minus half 0 1. So, we got this two

linearly independent eigenvector. So, this one and this one, one can check where they are

linearly independent.

So, corresponding to those lambda is equal to 2 because it was repeated this 2 times the

algebraic multiplicity was 2, this algebraic multiplicity of this was 2 and we also got now

the geometric multiplicity. So, the geometric multiplicity is also 2 in this case. So, we

have the algebraic multiplicity 2 and as well as the geometric multiplicity 2; geometric

cannot be more than the algebraic one again, but in this case we got at least the equality.
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So, the geometric multiplicity of this lambda is equal to 2 is 2, because we have two

linearly independent eigenvectors corresponding to this lambda is equal to 2 ok.

(Refer Slide Time: 15:13)

So this example 2, where we determine the eigenvalues and eigenvectors of this A the

matrix is given here 2 4 0 0 2 0 0 0 3 and in this case one can compute easily the

eigenvalues will be the diagonal entries because it is a lower triangular matrix and for the

triangular matrices, we have all the eigenvalues sitting on the diagonals here.



So, we have this 2 2 3 there these are the eigenvalues and the eigenvalues of a triangular

matrix are always it is a diagonal element; so, we have these eigenvalues 2 2 3. The

eigenspace now we will compute for lambda is equal to 2. Again I mean here, the if we

want to know the algebraic multiplicity so it is 2 4 2 and the algebraic multiplicity of 3 is

1. So, here the eigenspace you want to compute now to get the geometric multiplicity.

So, here the eigenspace; so, A minus lambda I so here 2 will  be subtracted from the

diagonal entry. So, we will get 0 there, 0 there, 1 there. So, this is the now the matrix A

minus lambda I and x is equal to 0. So, what do we see here, we can actually just take

this  we can  interchange  the  row and  then  we have  this  echelon  form;  row reduced

echelon form the 0 we can bring to the bottom if we like.

So, we can easily convert to this echelon form here and then we will see there will be 2;

there will be 2 pivot elements here. So, this will be the pivot element and this will be also

the pivot element when we convert into this echelon form. And this middle one so, here

the first column will have a pivot and the third column has a pivot and this x 2 is going to

be the free variable. So, this x 2 is going to be the free variable; that means, only one free

variable and we will get only one linearly independent eigenvector. 

And surprisingly here that, when we compute this x 3 is equal to 0 that is straight away

from this equation and from this equation, we will get this x 1 is equal to0. So, out of this

we are getting x 1 is equal to 0 also x 3 is equal to 0 and this x 2 will be the free variable

which we can take as alpha, and then this x 1 x 2 x 3we can write down as alpha times 0

1 0.  So,  here  in  this  case  what  we observe  though the  algebraic  multiplicity  of  this

lambda is equal to 2 was 2, but now we got the geometric multiplicity as 1.

So,  not  surprising  as  I  said  before  that  for  given  eigenvalues  we  cannot  predict  in

advance at how many eigenvalue vectors will be linearly independent so, we have to

compute them. What we know from that result that algebraic multiplicity is less than or

equal to the, or the geometric multiplicity is less than equal to the algebraic multiplicity

that the algebraic multiplicity of this 2 was 2. So, we know that there will be at most 2

linearly  independent  eigenvectors.  There  cannot  be  three  linearly  eigen  linearly

independent eigenvectors for example, in this case, but we do not know whether there

will be 2 or there will be 1. So, what we have observed? In the previous example though



the algebraic multiplicity was 2 and the geometric multiplicity was also 2. In this case we

have the algebraic multiplicity 2, but geometric multiplicity is just 1 in this case.

(Refer Slide Time: 18:57)

So,  here  the  geometric  multiplicity  is  1,  because  we  have  1  linearly  independent

eigenvector and the algebraic multiplicity of 2 is 2 because this 2 was repeated 2 times.
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Coming to the eigenspace of this lambda is equal to 3. So, we know already that there

would be only one. So, in this case we know that there will be only one free variable



definitely  because  the  algebraic  multiplicity  is  1.  So,  we  cannot  have  more  than  1

linearly independent eigenvector.

So, here if we compute this a minus lambda I x is equal to 0. So, we have this and then

when we solve this system. So, we will observe that there are 2 pivots in this case, when

we just we can just make this to 0 and then this will become also a pivot because this will

not be 0 in that case. So, you will have 2 pivot elements and this x 3 will be the free

variable in this case.

So, therefore, this alpha is corresponding to x 3 and this x 2 will be 0 and x 1 will be also

0 from this structure of the matrix. So, we will get the solution alpha x 0 1 1 and as

expected  or  there is  only  one linearly  independent  eigenvector  corresponding to  this

lambda is equal to 3. So, the geometric multiplicity of this lambda is equal to 3 is 1 and

the algebraic multiplicity of this lambda is equal to 3 was also 1 in this case.
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Another example we will find the dimension of this eigenspace of this lambda is equal to

this very special matrix here 1 0 0 1 1 1 and 0 0 1. So, in this case again we need to write

the characteristic equation. So; that means, a minus lambda I is equal to 0; so, 1 minus

lambda here, 1 minus lambda and 1 minus lambda and that determinant.

So, what we will observe in this case that the characteristic equation is lambda minus 1

power 3 is equal to 0. So, we have these 3 roots; so, 1 1 1. That means, this algebraic



multiplicity of this lambda is equal to 1 is 3 now. So, we have an example where all these

we  have  the  same  eigenvalues,  but  repeated  three  times.  When  we  compute  the

eigenspace here meaning we have to compute the eigenvector so with this equation a

minus lambda ix is equal to 0. So, what will happen in this case? That when we take this

minus lambda I so, minus 1 from the diagonal entries.

So, this diagonals will be also 0 and we have this very a simple example and in this case,

there will be only 1 pivot. So, this first column will have pivot and the second and the

third one will be the free variables. So, this is going to be the pivot element and then

nothing else. So, we have the free variable we have the free variable. So, there are two

free variables, meaning 2 linearly independent eigenvectors.
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So, here for x 2 be sine alpha 1, x 3 we sine alpha 2 and from this equation which says x

1 plus x 3 is equal to 0; means, x 1 is equal to minus x 3. So, we get here x 1 is equal to

minus alpha 2. So, when writing in this vector form we have x 1 x 2 x 3 as alpha 1. So,

this component here is 0; so 0 and then the second place will be 1 and then 0 for alpha 2

at 1 place you have minus 1 and then 0 and x 3 is alpha 2 here so 1.

So, we have this x 1 x 2 x 3 as alpha 1 times is 0 1 0, alpha 2 times minus 1 0 and 1. So,

there  are  2 linearly  independent  eigenvectors  corresponding to  this  eigenvalue  3;  so,

eigenvalue 1 here,  which was repeated 3 times.  So,  the algebraic  multiplicity  of this



lambda is equal to 1 was 3 and the geometric multiplicity of this lambda is equal to 1 is 1

oh sorry 2.

So, they are 2 linearly independent vector. So, the dimension of this eigen space is 2 or

the geometric multiplicity of this lambda is equal to 1 is 2, in this case. So, again though

it was repeated 3 times, but we got only this dimension as 2 not 3 and not 1, but the

possible values here could be 3, it could be 2 as this is the case here, but it can be 1 as

well.
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In this example again we will take this identity matrix. So, very simple to evaluate so we

have, we want to find the dimension again of the eigenspace of this A is equal to this

identity matrix. And if we write down its characteristic equation, we will get this lambda

minus  1  power  3  is  equal  to  0;  so,  again  we  have  this  1  1  1  which  the  algebraic

multiplicity of this eigenvalue is just 3 now.

So,  corresponding  to  this  1  so;  algebraic  multiplicity  is  3  and  if  we  compute  the

geometric multiplicity now that is interesting. So, the eigenspace will be computed by

this A minus lambda I, x is equal to 0 and therefore, when we subtract from the diagonal

entries this eigenvalue 1. So, what we will get this 0 matrix here and x 1 x 2 x 3is equal

to again the 0 matrix.



So, what do we see now in this case? That there is no there is no pivot here; there is no

pivot here and all the variables x 1 x 2 x 3 they are the free variables. So, we can choose,

we can assign any value to x 1 x 2 x 3 they are free here and that is a very special case

which we have just seen now, that we got the 0 matrix here as A minus lambda I and then

we have the possibility of choosing this x 1 x 2 x 3 freely. So, whatever we like and we

have taken alpha 1 here alpha 2 and there alpha 3 because all three are free variables.

And then this x 1 x 2 x 3 we can write down in terms of these alpha 1, alpha 2, alpha 3 as

this combination alpha 1 this 1 0 0, alpha 2 0 1 0 and alpha 3 will be 0 0 1. So, we have

three linearly independent eigenvector in this case corresponding to this lambda is equal

to 1. So, the algebraic multiplicity of lambda 1 was 3 and also the geometric multiplicity

which is the dimension of the eigenspace that is also 3 in this case. So, we have seen in

this example that, if it  is repeated 3 times it is also possible that we can get the full

dimension, here the dimension of the eigenspace that is 3. 

As many times as the lambda was repeated, but what that result says that it cannot be

more than 3. And naturally, that is the case here because the dimension that is the full

dimension because the elements belongs to this R 3 and we cannot have the dimension

more than 3 in that sense also we can conclude here.
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There is a concept here the similarity of matrices which will introduce here and we will

continue for the discussion in the next lecture. So, an n cross n matrix B is called similar



to an n cross n matrix A, if we have this B is equal to P inverse AP. If we have this

relation between the between the matrix A and B, then we call this P is similar to the

matrix A or A is similar to the matrix B. And what to we have to we this P what is the P

before some non singular matrix P, if there exists a matrix here this P inverse I mean, this

non singular matrix P therefore, that P inverse make sense.

So, if we have this relation between the 2 matrices here B and A that P inverse AP gives

the B the other matrix, then we call that these two are similar. Why do we use the similar

words some of the properties  we will  check today itself,  that  they share away many

common properties this B and A in terms of the eigenvalues, eigenvectors and there are

other considerations as well which we will continue in the next lecture.
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So, today we will see that if B is similar to A, then the B has the same eigenvalues as A

and if x is an eigenvector of A. Then this y is equal to P inverse x is the eigenvector of B

corresponding to  the same eigenvalue.  So,  meaning if  we know the eigenvalues  and

eigenvector of one, we can get the eigenvalues, eigenvectors of the other. In fact, they

same they have the same eigenvalues and the eigenvector also will be just the P inverse x

where P we have introduced already in the similar t definition. So, what we take that let

us say this lambda is the eigenvalue of this matrix A and the similar to A, we have the B

matrix. So, first of a relation we have for this A that x is the eigenvector and lambda is

the eigenvalue.



So,  we have  this  relation  Ax is  equal  to  this  lambda x.  And what  we do now? We

multiply by this P inverse here. So, the right hand side we have P inverse, P is that matrix

which we are talking about the similarity there. So, we have P inverse e Ax and here also

P inverse. So, the lambda is constant so, we have P inverse x there. And then what we do,

we have here the lambda P inverse x the same, the P inverse A again we have introduced

this identity matrix.

So, here we have introduced identity matrix which we have written as P and P inverse x

and then what we do, this we combine here P inverse AP; P inverse AP and then we have

P inverse x.  So,  what  do we see now, this  P inverse AP as per the definition of the

similarity that A similar to the or B is similar to A; that means, this B we can write as P

inverse AP. So, this we have this lambda P inverse x is equal to B times, this is B P

inverse x. So, what we observed now from this relation, that this is the eigenvector P

inverse x and this lambda is the eigenvalue of this B. 

So, if this B is similar to A the B will have the same eigenvalue as A because this lambda

was the eigenvalue of A and the eigenvector will be this P inverse x. So, we can get the

eigenvector and eigenvalue of the similar matrices if we know for one. So, lambda is an

eigenvalue of B and P inverse is the eigenvector corresponding to the eigenvalue lambda.
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Another result which actually we have seen already in this first result A B are the square

similar matrices, then they have the same characteristic polynomial. So, eventually we



have  seen  already  that  they  have  the  same  eigenvalue.  So,  if  we  have  the  same

eigenvalues  meaning  they  have  the  same  characteristic  polynomial,  but  this  is  just

another way of looking at it.

So, we take this B is P inverse AP this relation and then if we get this determinant B

minus lambda, if that is the characteristic polynomial B minus lambda I the characteristic

polynomial of this B here is equal to the determinant this B, we will replace by this P

inverse AP minus the same thing this P inverse P that is the identity matrix we have

introduced here. I mean, you can see easily that, this is nothing but the lambda I because

lambda we can take common, then we have P inverse I P and then P inverse I is equal to

nothing but the P inverse P lambda times and this is I. So, lambda times I so, we have

again here this is nothing but the lambda times I only, but we have rewritten in this form

that P inverse lambda I and P.
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So, here the determinant we have P inverse let us take common from both and then we

have A here and minus this lambda I and P from this right hand side, we can take as

common. So now, this A minus lambda I and then, this we can use the property of this

determinant here the product of these three matrices; that means, the determinant of P

inverse determinant of this middle one A minus lambda I and the determinant of P.



So, here the determinant of P inverse and determinant of P will cancel out each other, we

will get just one here and what we will get that is the property of this determinant P and P

inverse they are just the reciprocal and here we have determinant of A minus lambda I.

So,  what  we  have  seen  that  the  determinant  of  this  B  minus  lambda  I  is  equal  to

determinant of this A minus lambda I so, they have the same characteristic polynomial.

In other words, we can say again that this A and B will have the same eigenvalues and

we have seen again in the previous slide here the relation for the eigenvectors as well ok.
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Coming  to  the  conclusion  so,  in  this  lecture  we  have  talked  about  the  algebraic

multiplicity and that was nothing but the number of occurrence of an eigenvalue. And we

have also seen the geometric multiplicity that was the number of linearly independent

eigenvectors associated with that eigenvalue. And always this is the case that geometric

multiplicity is less than equal to the algebraic multiplicity and we have also talked about

the similar matrices; that means, B and A are called the similar to each other they are the

similar  matrices,  if  we have  this  relation  that  B is  equal  to  P inverse  AP for  some

invertible matrix P.
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So,  these  are  the  references  used  to  prepare  these  lectures  and  thank  you  for  your

attention.


