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Ok, we are finding the geometric and algebraic multiplicity of a matrix. So, we have seen

the matrix is 1 1 1 minus 1 minus 1 minus 1 0 0 0 0 1. And we have seen the roots of this

matrix; we got the characteristics equation like this. And if we equate the roots, we are

getting  the two distinct  eigenvalues.  So,  this  0 is  coming twice,  so that  is  why 0 is

eigenvalue  0 is  having a  algebra  multiplicity  2.  And eigenvalue  1  is  having  algebra

multiplicity 1. Now, we will talk about geometric multiplicity. So, for that we need to

find the set of eigenvectors corresponding to this eigenvalue.
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So, let us try with the first one with the eigenvalue 0. And I need to find the eigenvectors

the set corresponding to the eigenvalue 0. So, eigenvectors for the eigenvalue lambda 1

equal to 0. So, how to get eigenvectors corresponding to the eigenvalue 0? So, for that

we need to get the all the non-zeros so this is X all the non-zero vector X such that this is

true. Now, lambda is 0 so that means this is 0. So, we have to find the all the non-zero

vector X for which X equal to 0.

So, what is A, A is nothing but 1 1 1, then the minus 1 minus 1 0 minus 1 and 0 0 1, so

these into x 1, x 2, x 3, this is the 0 vectors. So, if you simplify this, we will be getting

like x the equation likes x 1 plus x 2 plus x 3 n equal to 0, then minus x 1 minus x 2

minus x 3 equal to 0, and then x 3 equal to 0. So, this will give us x 1 plus x 2 equal to 0,

and x 1 yeah if you put this to be 0, so we have x 1 plus we have basically two equations,

and x 1 plus x 2 equal to 0. So, you have option for x 3, so if you choose say x 3 is 0, we

have no option for x 3 sorry.
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So, now what are the values, now we can choose x 1 to be K or x 2 to be K, so this will

give us x 1 equal to minus x 2, which is say minus K, which is x 2 be K, and x 3 is 0. So,

these are the, this is the set. Now, this will corresponding to the vector like so x 1 x 2 x 3

if you the write it in a column way, this is nothing but if you take the K common, so

minus  1  1  0.  So,  this  is  the  set  of  all  possible  eigenvectors  corresponding  to  the

eigenvalue 0.

So, now this is this set along with the 0. So, this set if K could be 0, all these are all real

numbers. So, this is the real set. So the, you know this is a vector space, and dimension

of this space is called geometric multiplicity of this. So, this is generating by the all

vector, so dimension of this is 1. So, the geometric multiplicity of the eigenvalue 0 is 1.

Geometric multiplicity of the eigenvalue 0 is equal to 1 ehereas, algebraic multiplicity of

0 is 2, because 0 is coming twice in the root of the characteristics equations. 
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Now, we can similarly we can find the, which is this which is 1, and which is less than 2,

which  is  the  algebraic  multiplicity  of  the,  this.  Now, we  try  to  find  the  geometric

multiplicity of the Eigen value lambda 2, which is nothing but 1. So, to get this we need

to solve the homogene yeah will  need to solve the equation A X equal  to  lambda 1

lambda 2 X lambda 2 X. So, this will give us lambda, lambda 2 is 1 we can just write 1

into X. So, if X is X is x 1, x 2, x 3, so this will give us 1 minus 1 1 1, then minus 1

minus 1 minus 1 minus 1, then 0 0 1 minus 1, x 1 x 2 x 3.

This is the corresponding A minus lambda X A minus lambda i 0 0 0. So, this will give us

the solution like, so you this is 0, this is 0. So, this will give us solution like x 2 plus x 3

equal to 0, and so this means x 2 equal to minus x 3. And if you solve it, we will be get a

x 1 to be 2 x 2 minus x 3. So, if you just choose x 3, x 3 equal to be K, then x 2 will

become minus K, and x 1 is becoming 2 of minus yeah so x this is minus; so, 2 K minus

K, so this is also K.
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We have this x 1, x 2, x 3 is nothing but of this form. So, x 1 x 2 x 3 we take K common

which is 1 minus 1 1. So, this is generating the so this is the corresponding this is the all

possible eigenvector. So, every eigenvector is of this form. So, V of lambda 2 is nothing

but so the dimension so this vector is generating the group, generating the field.

So, the dimension of lambda 2 is equal to 1, which is same as this is the geometric

multiplicity. So, geometric multiplicity is the geometric multiplicity of lambda 2, which

is  same  as  algebraic  multiplicity  here.  Geometric  multiplicity  is  less  than  equal  to

algebraic less than equal to, so here the equalities occurring here ok. So, these are the

geometric and algebraic multiplicity of geometric multiplicity of an eigenvalue ok.



(Refer Slide Time: 09:12)

So, now we will talk about some properties of eigenvalues. Say, for example, if we have

a real symmetric matrix ok, we if we have a real symmetric matrix, then the eigenvalues

are  all  real.  And  if  we  have  a  skew  symmetric  matrix,  we  have  we  want  to  see

eigenvalues are either 0 or they are completely imaginary. So, let us try first one. So, the

theorem  is  telling  the  eigenvalue  of  a  real  symmetric  matrix.  We know  the  form

symmetric matrix, symmetric transpose of A is A are all real; so, eigenvalue of all real

eigenvalue of a real symmetric matrix.

Suppose, you have a real symmetric matrix a i j n cross n square matrix, where a i j’s are

real, so that means, if you take the conjugate of this, and that is same as this, this is

conjugate. And it is symmetric means transpose if you take the transpose of this, this is

same as A. This is an example of symmetric matrix. If we have 1 say minus 2 3, we have

diagonal we have nothing to do, but if the value over here is same as value over here. So,

if you have a say 4 over here, this has to be 4. So, value over here is same as value over

here. If it is minus 5, you have minus 5 over here. If you have a value over here say 9,

this has to be 9, so that means, a i j equal to a j i. So, this is the, for all i and j, then the

matrix is called symmetric matrix.

So, now this theorem is telling if you have a symmetric matrix, and if the all coefficients

are real that means, if the conjugate of a is same as this. So, conjugate means, if you have

a complex number, a plus i b a plus i b, then the conjugate of this is defined as a minus i



b. But, if b is 0, then it is called real purely real, then a conjugate is same as this. And if a

is 0, it is called purely imaginary, so that is the thing. So, now we have to so conjugate

matrix  means,  we  take  the  conjugate  matrix  we  defined  as  this  where  we  take  the

conjugate of each of these numbers.
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So, you are going to prove this that real symmetric matrix in real eigenvalues only. So,

how to prove this? So, for this we taken, so suppose lambda is eigenvalue of the matrix A

so that means, A x there is a non-zero vector X such that A X equal to lambda X or we

can say X 1. Some non-zero vector X 1 not equal to 0 vector. So, what we do, we take

the transpose of this now before transpose yeah, we take the conjugate. So, conjugate

must be same, and then we take the transpose. So, if we take the conjugate, then it is

nothing  but  A conjugate  X  1  conjugate  transpose  equal  to  lambda  conjugate  X  1

conjugate transpose, then there is a scalar quantity ok.

So, now this will give us so transpose will reverse this, so this is x 1 conjugate transpose,

and then lambda bar x 1 conjugate transpose. So, we have to simplify further ok. So, so

now this we can write as this X 1 conjugate A X 1 equal to lambda bar, we just taking a

both X 1 both side, lambda bar X 1 transpose conjugate X 1. So, if we further simplify

this,  we  take  this  transpose  we  have  to  be  carefully  this  transpose  and  T  bar  and

transpose. So, this is A X 1, because which is associativity property is there bar X 1 bar

transpose X 1 ok. So, let us just so up to this is fine.



(Refer Slide Time: 14:48)

Now, this is again lambda of X 1, so the lambda this is again lambda X 1 bar transpose X

1 equal to lambda bar X 1 bar transpose X 1. Now, this implies lambda equal to lambda

bar, because if you take this side, lambda minus lambda bar X 1 transpose X 1 equal to 0.

Now, this is X 1 is non-zero, so that that means, X 1 bar transpose X 1 is not equal to 0.

So, this means this has to be 0; lambda is equal to lambda bar. So, this means lambda is

this means lambda is real purely real, no complex part, no imaginary part in it. So, this is

the, this is one of the theorem. If the eigenvalues are if the matrix is symmetric real

symmetric matrix, then the corresponding i all the eigenvalues are real.
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Now, this is true for Hamilton matrix also. So, we will define the Hamilton matrix sorry

Hermitian  matrix.  So,  when  we  say  matrix  is  Hermitian  matrix,  if  A bar  transpose

transpose equal to A. This is the definition of Hermitian matrix, so then this is called then

then the matrix is called Hermitian matrix. Now, the way we proving the last just now

same technique will go. And we can say the all the eigenvalues are all the eigenvalues of

Hermitian matrix are real all eigenvalues of Hermitian matrix are real ok.
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So,  now  we  talk  about  real  skew  symmetric  matrix.  And  we  will  see  how  their

eigenvalue are (Refer Time: 17:38) A is n by n matrix skew symmetric matrix of the

coefficient of real; it is real skew symmetric matrix. Skew symmetric matrix means I will

I will define that symmetric matrix. Then the eigenvalues, eigenvalues are either purely

imaginary or 0 and the eigenvalues of a are purely imaginary means there is no real part.

So, like 2 plus 3i it is not purely imaginary. So, this part should not be there, so that is the

purely imaginary.

So, eigenvalues are purely imaginary or 0 ok. So, so this is how to so what is skew

symmetric matrix, so skew symmetric matrix is A transpose equal to minus A that is the

skew symmetric matrix definition that means, if A is a i j n cross n, then a i j must be

equal to minus a j i. And this true for all i and j starting from 1 to n, so that is why if the

diagonal element, where i is j is equal to i, diagonal event a i i equal to minus a i i, so that

means,  2 a i  equal  to 0.  So,  a  i  equal  to  0.  So,  for any skew symmetric  matrix  the



diagonal elements are 0. And off diagonal element  if we have a so all  the diagonals

elements will be 0’s over here, and off diagonal element so the, this is 2 this has to be

minus  2.  If  this  is  minus  4,  this  has  to  be plus  4,  so that  is  the definition  of  skew

symmetric matrix.
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And it is a real skew symmetric matrix the that means, this a i j’s a real number. So, a i

j’s conjugate if you take it is a i j so that means, this conjugate of so conjugate of sorry

conjugate matrix is same as this. So, this is the definition of real skew symmetric matrix.

So,  if  we have  a  real  skew symmetric  matrix  minus  A,  yes  if  we have a  real  skew

symmetric  matrix,  then  we  can  show  that  the  eigenvalues  are  either  0  or  1  sorry

eigenvalues are either imaginarily or pure. So, similar way we can argue that. 
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Now, we will talk about orthogonal matrix. So, this prove we are not doing is this will be

in the note lecture note. So, now we talk about eigenvalues corresponding to the to a

orthogonal  matrix.  So,  so  suppose  A is  orthogonal  matrix  orthogonal  matrix.  So,

orthogonal matrix means A to A transpose equal to identity, so that means A transpose is

an inverse of A. So, if we have a real orthogonal matrix, then the theorem is telling the

eigenvalues values of A has unit modulus. Unit modulus means mode of that eigenvalue

that means, if lambda is the eigenvalue, it is a complex number maybe mod of this is 1

that is the unit modulus had units mod modulus ok.

So, this we have to proof. So, how to proof this to prove this suppose yeah suppose

lambda 1 is eigenvalue so, and corresponding eigenvector is A X 1. So, we have this

while lambda, where X 1 is not equal to 0 and lambda 1 this. So, what we do we take the

transpose of this, and it is which is the conjugate, then we will take the transpose of this.

Then this is nothing but A bar transpose A bar X 1 bar transpose, then this similar thing

we did in the last proof. So, it is this is orthogonal matrix real orthogonal matrix. So, we

have to use that property also here to achieve that ok.
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So, A bar transpose so if you take the transpose, it will give us X bar transpose and A bar.

A bar is this is a real matrix so this A, so this is nothing but A transpose equal to so X 1 is

there, so yeah X 1 is already there equal to lambda bar X 1 bar transpose ok. Now, we

multiply both sides by A X 1. So, it is mode of it so we multiply both side by A X 1

transpose this A X 1 equal to lambda bar X 1 transpose A X 1 ok.

So, now we take this together A transpose A X 1 equal to this is A X 1 is nothing but

lambda X 1. So, transpose lambda X 1, so this lambda X 1 what we can do yeah. So, this

is identity matrix, because this is the property of orthogonal matrix. So, this will give us

X 1 transpose X 1, this identity matrix. And this will give us lambda lambda 1 we take

this side, so lambda sorry lambda 1 these are lambda or lambda 1 any way lambda is

lambda. So, so lambda bar lambda X 1 bar transpose X 1 ok.

So, this will give us X 1 bar X 1 into 1 minus lambda bar lambda equal to 0. Now, this is

non-zero quantity. So, this  implies  lambda bar equal  to 1. Now, this  implies  mod of

lambda equal to 1. So, if lambda is the complex number, so modulus is 1. So, it has unit

modulus ok, so this has unit modulus. So, we will talk about more on this. In the next

class, we will define diagonalization of the matrix. So, those we will we will discuss in

the next class.

Thank you.


