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Lecture – 37
Geometric Multiplicity

So, we are talking about eigenvector. So, just to recap to I will discuss the Geometric

Multiplicity of eigenvector.
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So, just to recap, so, we have a matrix, square matrix n cross n square matrix, then we

call a non-zero vector to be eigenvector of this matrix if X is non-zero and this system

has a lambda n lambda, this system has a non-zero solution and then that and we have

seen also if we have a. So, this is corresponding to a also A eigenvector is corresponding

to unique eigenvalue and for a eigenvalue we have a we could have a many eigenvector,

but it should be from the same field, where this A i is coming from like if A is A i J n

cross n and if the matrix element  are coming from the field is  then this  eigenvector

should be coming from the same tuple where each of X i is F.

So, this is. So, basically X T is belongs to F to the power n, but there are, they have they

are must be from the same field. So, now, we will take example of a real Eigen real

matrix where eigenvector will does not exist because of field. So, let us take an example.

So, suppose our field is the real field and we have a matrix like this 0 minus 1 1 0.
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So, what is the characteristics polynomial? Characteristics polynomial is x square plus 1,

so, characteristic equation is this. So, we have seen this example in the last class. So, we

have two eigenvalues this, this is a complex number. So, this eigenvalues are complex,

so, the so; eigenvalues are comple;x so that means, this imply there is no eigenvector

exist in the real field, because of underlined filed is real, but if you allowed to have the

complex field then we will come to that.



So, no eigenvectors in the real in the field. So, no eigenvector exist in that case, but if we

allow our field to be the complex filed, then we can find the eigenvector corresponding

to this eigenvalues.
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So, let us take this matrix again and now our field is a complex filed set of all complex

number. And we have two Eigen values, lambda 1 is equal to i, lambda 2 is equal to

minus i plus minus i 2 eigenvalues. So, we want to find the eigenvector corresponding to

these two. So, eigenvector corresponding to lambda 1, this is i. How to find? This is a set

of all non zero vector such that set of all non-zero vector now, they are coming from

complex such that A X equal to lambda 1. So, lambda 1 is i X. So, this if we simplify, we

will get the homogeneous equation like this, 0 minus i minus 1 1 0 minus i x 1 x 2 equal

to 0 0.

So, that will give us e on equal to i x 2. So, that; that means, if we took x 2 to be K, any

complex number then x 1 is x 1 is, K i so; that means, eigenvector of this form. So, 1 is

K, now x 1 is K i and x 2 is K, so, this is of the form i 1, ok. This set if you vary K, K is a

complex number; so, this is the this set is called the eigenvector, we can corresponding to

the eigenvalue, this is the set of all vector like this where K is a complex number, ok. So,

this is the eigenvector corresponding to this.



(Refer Slide Time: 05:40)

.

Similarly,  we  can  find  the  eigenvector  corresponding  to  other  eigenvalue.  So,

corresponding to lambda 2, which is minus i, if we do that we will get the equation like

this 0 plus i minus 1 1 0 plus i x 1 x 2 equal to 0 0. So, this will give us something like x

2 is equal  to K and x 1 equal  to minus K i.  So,  this is  basically  the set,  so,  this  is

eigenvector. We can write V actually so, this is a set of K into minus i 1, here coming

from  the  complex  field.  So,  this  is  the  eigenvector.  So,  these  are  the  eigenvectors

corresponding to this, ok.

So, now we will get some result on the eigenvector. So, if you have two eigenvector

which is corresponding to two distinct values then they are independent. So, this is the

theorem.
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 Again, suppose A is a square matrix, A are coming from the field, A are coming from the

field a i J, if, and I suppose we have two eigenvector X 1 corresponding to lambda 1 and

X 2 corresponding to lambda 2, we have two eigenvectors, they are corresponding to two

distinct eigenvalues such that lambda 1 is not equal to lambda 2.

And this X is are coming from X 1 and X 2 are coming from the n tuple of the field

where elements are from the fields this n tuple, ok. So, now, our claim is, these two are

independent X 1 and X 2 are linearly independent set of vector, independent linearly

independent, linearly independent over this. So, how to show that? To show that we need

to take a, a linear combination of this and we have to show, how to show two vectors are

linearly independent? So, we have to take alpha X 1 bar plus beta X 2 bar and if we are

take  it  to  0,  if  this  implies  alpha  equal  to  0  equal  to  beta,  then  this  is  the  linearly

independent set of vectors, ok. You can take it column wise also does not matter.
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So, now, we take now to prove this linearly independent set of vector what we do, we

just apply. So, we have in column wise if we take alpha X 1 plus beta X 2, we are taking

this is 0, this is a column vector. Now, we know that A X 1 equal to lambda 1 X 1, A X 2

equal to lambda 2 X 2. So, now, if we apply A on this so, A lambda X 1 plus B sorry,

alpha A X 1 plus beta A X 2, this is 0 vector. Now, so, now, this is one equations. Now, if

we just alpha A beta Y, now alpha this is give us what this is the alpha lambda 1 X 1 plus

this is A X 2 is lambda 2 beta lambda 2 X 2 equal to 0.

 Now, if you multiply this with lambda 1, then we get alpha lambda 1 X Y plus beta, we

are multiplying this with lambda 1, lambda 1 X 2 equal to 0. So, if you subtract this, this

is cancel out, this is beta into lambda 2 minus lambda 1 X 2 equal to 0, but here none of

them are 0, X 2 is non zero vector and these are distinct we assume, so, this gives beta

equal to 0. Similarly, if you multiply this with lambda 2 and if you subtract will get sorry

beta equal to 0, we will get alpha equal to 0 so; that means, these two are set are linearly

independent X 1 and X 2 are linearly independent set of vectors. So, any two vector

which are corresponding to the distinct eigenvalues, they are independent.
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So,  this  result  hold  for  more  than  two  also.  So,  if  we  have  three  eigenvectors

corresponding to three distinct eigenvalues. So, if we have X 1 corresponding to lambda

1, X 2 corresponding to lambda 2, X 3 corresponding to lambda 3, if they are more also

X K corresponding to lambda KS.

And if they are distinct, if lambda k are distinct if lambda is not equal to lambda J, i not

equal to J; that means, this say this is corresponding to distinct eigenvalues, then this set

is a linearly independent set of vectors. Then this set is a, is linearly independent set of

vectors. We prove for two, we can extend it for more than two by the help of even for the

induction inductive prove we can do, ok. Now, this is one observation and now we are

going to define the geometric multiplicity of a eigenvalue for that we need to bring the

vector space subspace. So, let us have the, ok.
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Now, A is an A is n cross n matrix coming from the field F. Let lambda be an eigen value

of A, ok. So, it has many eigenvectors. So, that eigenvector we take it as this. So, this is

the set of all non zero vectors, these are coming from the same field such that A X equal

to lambda X, this is infinite set we have seen. Now, if we add this with if we take this

vector V which is if we add the 0 vectors, because 0 is; obviously, has a will satisfy this.

Then this is a, I mean if you take the transpose of this is a this is a subspace, this is a

vector space and vector space this is a subset of V to the power n, I mean transpose of

that V to af, af to the power n, n tuples, ok. So, and we know this is a vector space now

this is subset.

Now, when we can say a subset is again from a vector space we have some measures in

subset condition we will come to that. So, we have to show this is a, this V along with

this is a subspace of this, ok. And the dimension of that subspace is nothing, but the

geometric  multiplicity  of  this  lambda.  So,  so,  first  of  all  you  have  to  show  this  is

subspace. So, how to show this is subspace, ok. So, to show subspace we need to take

two vector from this.
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So, let us have a vector space again. So, this is nothing, but the set X, we can take the

transpose if you are comfortable with the row or column vector, but anyway these are the

notation. So, X such that X is non zero such that A X equal to lambda X and we include

the 0 vector you know 0 is obviously, a solution of this.

Now, if you take X 1 and X 2 from this, two vector X 1 and X 2 from this and if we can

solve alpha X 1 plus beta X 2 also belongs to this. And if this is true for all such X 1 X 2

and  for  all  the  scalar  this.  Then  this,  this  was  a  if  you  remember  the  vector  space



subspace there we prove that this is a condition necessary in sufficient condition to a

subset to be become a any vectorspace under the same two operations. Anyway, so, we

have to show this. So, how to show this? So, to get this we have to do A so, this is a this

is Y. So, we have to show Y is belongs to this. For that we need to show A Y is equal to

lambda Y, if we can show that then Y belongs to Y is again a vector space i, i in vector.

So, what is A Y? A into alpha X 1 plus beta X 2.
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So, this which I have write alpha A X 1 alpha beta plus scalar. Now, this, this two are

eigenvector corresponding to eigenvalue lambda. So, this is nothing, but lambda X 1 plus

beta, lambda X 2. So, we take lambda common. So, this is alpha X 1 plus beta X 2.

So, this is lambda Y. So, A lambda is equal to lambda Y so; that means, Y is again A Y is

either 0 or it is again a eigenvector of corresponding to lambda. So, this result is true.

This implies that V is a vector space, which is a subspace this is a subset of the F to the

power n. And the dimension of this vector space is defined as geometric multiplicity of

lambda. The dimension must be less than n, less than equal to n, because n is the n is the

dimension of the F n and it is a subspace. So, dimension has to be less than n. So, that is

the geometric multiplicity of the eigenvalue lambda.
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So,  the  dimension  of  V  is  called  geometric  multiplicity  of  lambda.  We know  the

algebraic multiplicity, algebraic multiplicity is the number of times lambda is coming in

the  roots  of  this  polynomial  characteristic  equation.  So,  that  was  the  algebraic

multiplication.  What  was  the  algebraic?  If  this  is  the;  if  this  was  the  characteristics

equation then if lambda is eigenvalue and lambda will be the root of this equation. So, if

it is coming, if the root is of multiplicity r; so that means, lambda coming r times in the

root. So, then we must write x minus lambda to the power r then some other polynomial

where phi of lambda is not equal to 0. Because r is then r is called algebraic multiplicity;

r is called the algebraic multiplicity of lambda, ok.

And this dimension of this vector space is called geometric multiplicity of lambda. So,

we have a result that is called if r is 1; that means, if the lambda if the r is the lambda is

the root with multiplicity 1 then lambda is called simple eigenvalue, ok and we have a

result  for  geometrical  algebraic  multiplicity.  So,  that  is  telling  us  that  algebraic

multiplicity geometrical multiplicity is less than equal to algebraic multiplicity. We will

get the geometric algebraic multiplicity through an example. So, this theorem is telling.
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So, suppose A is an n by n matrix, a lambda is an eigenvalue value of A any eigenvalue,

then we have this result; 1 less than geometric multiplicity of lambda, multiplicity of

lambda is less than algebraic multiplicity, ok. I am not going to prove this proof is there

in a text book. So, geometric multiplicity is always less than equal to less than equal to

these are all  less than equal to algebraic multiplicity. And lambda is called a regular

eigenvalue, if these two are same; lambda is called a regular eigenvalue, if geometric

multiplicity of lambda is same as algebraic multiplicity of lambda.

If the geometric multiplicity of lambda is equal to algebraic multiplicity lambda then it is

called a then it is called a, it is called a regular eigenvalue, ok. We will take an example

and we will  find this  both  the  multiplicity  for  a  given matrix  A.  So,  let  us  take  an

example.
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So, we take a matrix over the real 1 1 1 minus 1 minus 1 minus 1 0 0 1. So, we take this

matrix. Now, we have to find the eigenvectors of eigenvalues of this matrix. So, for that

we need to construct  the corresponding characteristics  polynomial  and characteristics

equation.  So,  characteristic  polynomial  is  nothing  but  A minus  x  I.  So,  determinant

characteristic giving us this.

So, this is nothing but 1 minus x 1 1 minus 1 minus 1 minus x then this is minus 1 and 0

0 1 minus x. So, determinant is 0. So, if you solve this, it will give us the if you calculate

this determinant 1 minus x into x square equal to 0. So, this is giving us the solutions x

equal to 0 0 1. So, it has two distinct eigenvalues 0 and 1 and 0 is coming twice; so,

multiple this root are 0 and 1. So, the roots multiplicity of 0 is 2. So, that is the algebraic

multiplicity and geometric and the algebraic multiplicity of 1 is 1, ok.
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So, that is the, so, we have two eigenvalue, two distinct eigenvalue lambda 1 is equal to 0

lambda  1  0  with  algebraic  multiplicity  2  and  lambda  2  equal  to  1  with  algebraic

multiplicity 1, ok. So, these are the algebraic multiplicity. So, in the next class, we will

discuss  we will  find  the  geometric  multiplicity  of  this  eigenvalue.  So,  we have  two

distinct eigenvalues 0 and 1. So, we will discuss the geometric multiplicity of these two

eigenvalues.  And  for  that  we  need  to  take  the  set  of  the  vectors,  the  eigenvectors

corresponding this to this eigenvalue that we will discuss in the next class.

Thank you.


