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Lecture – 29
More on Linear Mapping

So, we are talking about linear transformation.  So, basically just to recap we have 2

vector space: U and V over the same field F.
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So, we have 2 vector spaces U and V over the same field F. So, a mapping from U to V is

called linear transformation if the, if this property satisfy T of a alpha plus b beta can be

written as a T alpha plus b T beta. And if this is true for all a b coming from the scalar

and for all alpha beta or the vector form U. And this will be a vector in V and this will be

a vector in V and that is why we need to have the same field, so we can operate this so

this will be again a vector in V. 

So, if this is true then we know this is the definition of the linear transformation. Now,

we will talk about some operation on the linear composition up to a linear transformation

ok. So, suppose we have 3 vector: space U V W over the same field, so you have a vector

space U V and suppose you have a another vector space W and both are over the same

field F.
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So, we have basically 3 vector space and we have a 2 linear transformation one is from

say U to V and another one is say S from V to W. So, you have another mapping which is

S from V to  W. So,  they let  these  to  be let  T and S be two linear  mapping,  linear

transformation  or  mapping.  So,  now first  of  all  this  is  a  linear  mapping,  so  it  is  a

mapping T and U both are mapping. 

So, T is a mapping from U to V and S is a mapping from V to W. Now, if you consider

the composition of this is also a mapping. So, composition means we take a element

alpha from here, so we apply T. So, this will give you give us T alpha and then on this is

the element in V. So, if we apply S on this, so this is S of T alpha. So, now, if you

consider this mapping say composition mapping which is denoted by S compost T, this is

the mapping.
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So, this mapping, so it is basically a mapping from U to W, so we take a alpha from U.

So, S compost T alpha is basically we first applied T alpha then it will be an element in

V, once  it  is  a  element  in  V  we  can  apply  the  S  on  it.  So,  this  is  basically  our

composition, how we define the composition. So, this is the compos mapping, now we

want to check whether this is also a linear mapping or not linear transformation, so that

we have to check. So, for that what we need to check we need to check the, we need to

take 2 ab from the scalar and we need to verify that.

So, this a alpha a alpha 1 plus b beta 1 or a alpha plus b beta a alpha plus b beta. If we

can write this S compost T on this if we can be written as S compost T a, a S compost T

alpha plus b S compost T beta. If we can show this then by definition this S compost T is

a linear function, linear mapping sorry linear transformation yeah all are same basically.

So, this in short we denote by S T basically, so this is basically S T in short we denote, so

we want show this.
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So, let us try that so S T of this is basically, so S T of this is basically by definition we

first applied T on this a alpha plus b beta then we apply S on this. So, this is basically the

composition of 2 mapping. So, now how to write this, so this can be written as so then T

is a linear mapping. So, T can be written as S, so T can be written as a T alpha plus b T

beta  since T is  linear, since T is  linear  transformation.  So, by the property  of  linear

transmission we can write that ok. So, basically we have this now S is also linear, so if S

is linear we can write this as. So, this is some gamma 1 gamma 2, so basically a of S of T

alpha plus b of S of T beta this is because S is linear, this is because S is linear.

So; that means, the S T of a alpha plus b beta is nothing but a S of a t a into T of alpha

plus b S of T beta. So, this is nothing, but a S T alpha plus b S T beta and this is true for

all alpha beta and all a b. So, these imply S T which is basically S compost T is a linear

mapping  is  linear.  So,  this  is  the  proof  of  linearity  of  this  composition.  So,  the

composition if S and T are both linear then the composition mapping is all composition

function is also a linear function ok. Now, we will define the inverse of a transformation,

so we just define the inverse linear transformation, inverse of a linear mapping ok.
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Now, we know the suppose you have a mapping from U to V, so suppose you have a to

vector space U V over the same field F. So, this is over T now basic we suppose this is a

this is a linear mapping suppose this is a linear transformation or linear mapping ok.

Now  this  is  a  mapping  now  we  know  the  mapping  has  a  inverse  if  this  is  a  this

transformation is one to one and onto. So, suppose this T is bijective basically bijected

mapping that means, it is one to one and onto if it is one two and onto then we can have a

inverse. 

So, how you define the inverse, so inverse is also a mapping. So, this T inverse which is

a mapping from V to U, so how to define that so suppose this is beta so this is alpha so

alpha is going to beta. So, T inverse of beta will be alpha if and only if T alpha equal to

beta and since it is one to one T is one to one. So, there is only one alpha which is going

to beta so the that means, this T inverse is well defined ok. So, that this means T inverse

is a mapping T inverse is a mapping because this T is bijective T is one to one and as

well as it is onto. 

So, the range of T is covering the whole V so that means, if you take a any element all

beta over here it has a pre image over here. So, this is a well defined mapping now we

have to check whether this mapping is also a linear transformation or so or not yes this is

a linear transfer, but; that means, is a proof. So, we have to check this inverse is also

linear transformation is not or not. So, let us try that so for that.
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So, let us take T inverse of al a beta 1 plus b beta 2. So, we have say we take two point

beta 1 and beta 2 in V and we want to write this as for linear transformation we need to

write we need to. So, this is a T inverse of beta 1 plus b T inverse of beta 2 ok. So that

means, this is basically how we can write that, so this beta 1 beta 2 belongs to V that

means, there exists alpha 1 alpha 2 belongs to U such that T alpha 1 equal to beta 1 and T

alpha 2 equal to beta 2 such that T alpha 1 equal to beta 1 T alpha 2 T is equal to beta 2.

So, now what we do we just take this now what is the a alpha 1 plus b alpha 2. So, if we

apply T on me now T is a linear transformation. So, this will be written as a T alpha 1

plus b T alpha 2 now a T alpha 1 is basically beta 1 plus b beta 2. So, that that means, T

of this is this so that means, T inverse of this is basically a alpha 1 plus b alpha 2 this is

coming from this fact.
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So, now this is nothing, but a T alpha 1 alpha 1 is equal to alpha 1 is equal to T inverse of

beta 1. So, this we can write as a T inverse of beta 1 plus b T inverse of beta 2 because

alpha 1 alpha T is coming alpha 1 alpha 2 is image is beta 1 and beta 2 that is it. So, this

is  the definition of this  implies  T inverse is a linear mapping say T is linear  then T

inverse is also linear transformation.

So, this is the inverse of a linear transformation is also linear, but for to exist the linear

mapping we need to have this T should be a bijective mapping ok. So, now, we will

define isomorphism or isomorphic between 2 vector space.  So, first  let  us define the

when you call a linear transformation is isomorphism.
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So, isomorphism, so it  is basically  a bijective mapping any bijective mapping is call

isomorphism any. So, suppose you have a vector space U and V let  this  be a linear

mapping, linear mapping between linear mapping from U to V from 2 vector space U to

V. And these 2 vectors has to be over the same field over the that is most important same

field F want the same scalar field F ok.

Now, this T is called then T is called a isomorphism and isomorphism presence if T is

bijective if T is bijected. That means, it is one to one and onto one two one and onto

mapping if both one two one and onto then we call a mapping is a bijective mapping. So,

if T is bijective then we call T to be a isomorphism and then this vector 2 vector space

are isomorphic if there exists a bijected linear transformation between U to V then we

call a vector space to be isomorphic, and then it is denoted by U. So that means, if there

is a linear transformation which is bijective then we call 2 vector spaces isomorphic.
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So, U and V this  is  isomorphic you can use this  symbol isomorphic.  So, even these

isomorphic if there exists a linear transformation linear mapping T from U to V which is

bijective so that means, if there is a isomorphism between U and V which is bijective

then we call these to vector space are isomorphic U and V.

Now,  we  have  some  theorem,  so  if  U  V  are  isomorphic  then  they  have  a  same

dimensional vector space and conversely if they have a same dimensional vector space

then it has to be isomorphic. So, we have we just write the theorem in the proper rate.
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If  this  theorem is  telling  let  U  and  V be  to  finite  dimension  vector  space  to  finite

dimensional vector space vector space, over the same field this is important otherwise we

cannot  define  the  mapping.  Over  the  same  field  F  then  U  fear  isomorphic  if  the

dimension of U is equal to dimension of V. Then U and V are isomorphic if and only if

there dimension is same if and only if dimension of U is equal to dimension of V ok. So,

this is the theorem, so you have to prove this theorem.

So, there are two parts one part is if there isomorphic then their dimension must be same

first  part  and  second  part  is  if  the  dimension  is  same  we  have  to  prove  they  are

isomorphic. So, let us try to prove the first part suppose they are isomorphic U and V. So

that  means,  this  imply  there  exist  a  bijective  mapping  U  to  V  bijective  linear

transformation from U to V ok.

Since T is bijective then the kernel of T is basically only the 0 vector of U kernel of T

means that with set of all vectors which are mapped to the 0 vector. Now, since T is

bijective that means, T is 1 to 1 and we have seen in the previous class that for a 1 to 1

mapping the kernel  is  0,  so all  these 0 is  map to these ok.  Now, kernel  is  0 means

dimension of the kernel is basically kernel is 0 vector dimension kernel is 0 and it is on

two. So that means, it is T is on 2 also T is onto means the range of T is basically V

because it is onto mapping ok.
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So, this means dimension of range of T is same as dimension of V. Now, we know in the

last class that rank nullity theorem that is telling the dimension of the kernel of T large

dimension of the range of T is equal to dimension of the domain dimension of V. So,

now, this  is  0  this  implies  now this  is  0,  so  the  dimension  and  this  is  the  onto  so

dimension of V is equal to dimension of V.

So, this is the first part of the theorem, so if these two are if there is a bijective mapping

then their dimension is same. And the second part of the theorem is if their dimension is

same then we have to show that they are isomorphic that that means, we need to define a

linear transformation which is bijective. So, let us try that this is the second part of the

theorem.

(Refer Slide Time: 21:19)



Conversely suppose dimension of U is equal to dimension of V, we have 2 vector space

UV which are finite dimensional and their dimension is same. So, now let us take a basis

on U, so say alpha 1 alpha 2 say their dimension is say n there are n number of vectors in

the basis for both U and V. 

So, say beta B U is equal to alpha 1 alpha 2 alpha n is the basis of U. So, this is U on that

b U be basis of U and B V which a beta 1 beta 2 beta n be a basis of V their same

dimensional. So, number of vectors in the basis will be same and that is a n, so this is a

basis this is a basis. Now, we defined a linear transformation from U to V like this. So, T

of alpha 1 is going to beta 1 like this.
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T of alpha 2 is going to be beta 2 and dot dot dot dot in general T of alpha is going to

beta i. So, dot dot dot T of alpha n is going to beta n ok, so this is the way we define the

linear transformation. Now, this is this is a so this is a linear transformation from U to V,

now how we get this transformation suppose we take a alpha from here alpha is some a a

1. So, alpha is a member in U, so it can be written as the linear combination of the vector

in the basis alpha n. So, how we define T alpha T alpha it is a linear transformation T

alpha is defined as a to T alpha 2 a n T alpha n.

So, this is basically a 1 beta 1 plus a 2 beta 2 an beta n. So, this is the way we define the

T from U to V we take any alpha from U and this is the way we define this ok. Now we

will so this T is a bijective mapping, so for that first of all we need to show T to be a one

to one. So, for one to one we need to show kernel of T is 0, 0 means the 0 vector of U so

what is the. So, suppose alpha belongs to kernel of T let alpha belongs to kernel of T, so

that means, T alpha is going to 0 vector of V now T alpha is nothing, but this. So, a 1

beta 1 plus so suppose yeah alpha is member of this suppose alpha is written as this.

 So that means, this so that means, a a 1 beta 1 plus a 2 beta 2 dot dot dot an beta n this is

0 vector of V. So, now these are linearly independent beta as i are linearly independent

LI, so this implies all the a i’s are 0 ok, so all the a i’s has 0. So, it seems all the a i’s are 0

that means, alpha is basically summation of ai alpha i alpha is 0 vector of U. So, that that

means, all these so the that means, kernel of T is on the consist of 0 vector of U ok, so

that means, this T is this implies T is one to one. Now, we need to show that T is onto

also for that we is you will use the rank plus nullity theorem.
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So, we know that kernel dimension of kernel of T plus dimension of range of T is equal

to dimension of U this is the rank nullity theorem. Now this you have seen this is 0

because dimension is 0 because this T consists kernel of T consist all the 0 vector of U.

So, 0 plus dimension of is equal to dimension of U which is same as dimension of V, so

that is the assumption we made. 

So, this makes dimension of range of T is basically dimension of V, so this implies range

of T is basically the whole red V. So, this implies T is onto mapping, so this implies T is

onto. So, you have seen T is one two and T is onto, so T is bijective and this implies that

U and V are isomorphic if they have same dimension if they have same dimension they

will also one. Now, I will quickly show another result on this isomorphism.
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Suppose is other theorem let V be a finite dimensional be a n dimensional vector space

mensional  vector  space  over  the  field  F,  vector  space  over  the  field  F.  Then  V is

isomorphic  with  F  n,  F  n  is  the  basically  Cartesian  product  F  cross  F  cross  is  the

Cartesian product of this. So, this is a this will, so this how to prove this ok? So, since

time is over so we will prove it in the next class.

Thank you.


