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Lecture – 28
Linear Transformation (Contd.)

So we are talking about Linear Transformation between two vector space.
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So, it is basically a mapping from the vector space U to V and these two vector space

wherever the same field F. So, this is U this is V and it is basically a mapping from U to

V which has some property like T of a alpha plus b beta must be equal to aT alpha plus

bT beta and this is true for all a, b and for all alpha beta then you called this is a linear

transformation.

And, then we defined the kernel of the linear transformation is basically set of all vector

which are mapping to the 0 vector of V. So, that is the kernel of T.
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And, we have seen in the last class if T is one-to-one then the kernel of T is basically we

have seen these theorems. So, T is one-to-one or injective if and only if both the way

kernel of T is only the 0 vector of U.

So, this we have seen in the last class and also this is if, and only if the if the T is one-to-

one then the kernel of T is 0 vector only and if the kernel of T is 0 vector then T has to be

one-to-one this we proved in the last class.
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And, also in the last class we have seen another theorem like if. So, these two are the

vector space over the same field. Now, suppose T is one-to-one; that means, suppose

kernel of T is only the 0 vector of U; that means T is one-to-one. Then, if you take a

linearly independent set of vector alpha 1 alpha 2 alpha 3.

So, these will map to the. So, T alpha 1, T alpha 2, dot dot dot dot T alpha r say. So,

alpha 1, alpha 2, alpha r are L. I in U then this implies. So, T alpha 1 T alpha 2 alpha r

are L. I in V.

So, it will it will just map to a linearly independent set of vector in V. So, if we take a

linearly  independent  set  of  vector  in  U,  provided  this  T is  one-to-one;  that  means,

provided kernel of T is 0. So, we will take some example of to get the kernel of vector

space.
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So, we take the example from the last class. So, we have the linear transformation from

R 3 to R 3. So, this is basically T of x 1, x 2, x 3 this we discuss in the last class and we

have you know this is a linear transformation x 2 plus 2 x 3 comma x 1 plus 2 x 2 plus x

3. So, we know this is a linear transformation. Now, we want to find the kernel of this.

So, kernel of this is basically the set of all alphas which are mapping to. So, kernel of T

is basically set of all alpha which are mapping to 0 vector: so 0, 0, 0. So, that means,

these are all mapping to these are all 0, 0, 0. So, from these we get three equations x 1



plus, x 2 plus, x 3 is 0 2x 1 plus x 2 plus 2x 3 is 0 and x 1 plus 2x 2 plus x 3 is 0

homogeneous equation and if you solve this we are getting x 1 equal to K some constant,

x 2 is equal to 0, and x 3 is equal to minus k.

So that means, x 1, x 2, x 3 we can write as k of 1, 0, minus 1; so the that means, if you

take this as a alpha so, it is a linear combination of I mean this kernel of T is basically

linear span of alpha, where alpha is the vector 1, 0, minus 1. So, linear span of this with

this is the linear span it is generate the kernel it is generate the subspace. And, we know

kernel is a subspace ok.

So, this is one example of the kernel and the dimension of this kernel here is dimension

of  kernel  of  T is  basically  1,  because  there  is  this  is  the  only  one  vector  which  is

generating this. So, it is dimension of this kernel subspace is 1.
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So, now we will define the image of a linear transformation, image or range also it is

called. So, suppose you have a linear transformation from U to V. So, this is our vector

space U, this is our another vector space V over the same field F and suppose, this is a

linear transformation linear transformation so, we have those property of you know how

to doing in the linear transformation.

Now we defined image of T image of T or this is also called range we know the range of

the function, right. So, anyway we will write image of T. So, in short this is called ImT.



So, this is basically;  we know this is a mapping from this set to this set.  So, it  may

happen that from this set there are few vectors are covering not the all vectors, it is not

need not be onto mapping. If it is onto mapping then all the element has a P image, but

we are, but in general we just consider those elements from V so, those vector those beta

from V such that there exists alpha for which T alpha is equal to beta.

So, we consider those element who has a T image over here. So, this is beta you have do

alpha such that on the T this is basically T alpha. So, collection of those sets is called

basically the range of the function or it is called also image of T. So, it is basically that

collection of all the vectors of V which is having a P image; which is having a P image in

use that means there exist a alpha such that it is that alpha is mapping to the vector beta.

This collection is called range of T or image of T.
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Now, also this is again in form a vector space subspace or under this V. So, how to show

this? So, our theorem is. So, image of T is the subspace of V.

So, how to prove this? So, to prove this subspace we know we have to take beta 1 beta 2

from this set and we need to show that a beta 1 plus a beta 2 sorry b beta 2 is belongs to

this and this is true for all these all a, b if you can show this then we can say the subset is

a from a subspace of subspace. So, how to prove that? So, we take beta 1, beta 2 from the

image of image set of or range set of T.
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That means, there exist a since there in the image set there exists alpha 1 alpha 2 from U

such that such that. So, there exists alpha 1 alpha 2 such that T alpha 1 equal to beta 1

and T alpha 2 is equal to beta 2 since there in the image of T, ok. So now, we consider a

beta 1 plus b beta 2.

So, this is nothing, but what this is nothing, but a T alpha 1 plus b T alpha 2. Now, this is

a T is a linear transformation. So, this is nothing, but a alpha 1 plus b alpha 2. So, now,

the since so, this is a, this is some alpha this is T alpha. So, this, that means, where alpha

is equal to a alpha 1 plus b alpha 2 and this is a member in this is a vector in U. So, it is

mapping to some vector in V. So, that means, this belongs to image of image of T. So,

this is true.

So, for any two alpha for any two beta 1 beta 2 we can say a alpha a beta 1 plus b beta 2

belongs to the same set for all a, b. So, this implies this is a vector space. This implies

this is a, this form a subspace of V.

So, we will saw some properties on this subspace.
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So, like first property is. Suppose, we have a vector space form U to V U to V over the

same field. Now, we have at linear transformation say from U to V, we have two vector

space U, V and we have a linear transformation of from into V.

Now, suppose this is we have a image of T. So, this part is basically there is no P image

here. So, now say a this is a linear transformation. Now, if we get a basis if we have a

basis in U so, let this theorem statement is that alpha 1 alpha 2 alpha n is a be a be a basis

of U, then T alpha 1 T alpha 2 T alpha n generates that set, that image of T. Then this

generates generate means generates means the linear span of this L of the set this is a this

is a some set say this is b this is say some w or some C. So, L of C is basically image of

this.

This need not be a linearly independent set, even they may not be unique, they may not

be distinct also because, we have we are not saying that this kernel is it say one-to-one. If

this T is one-to-one then we know that this will map to a linearly independent set of

vector ok, but we are we have proving it we are not assuming this is one-to-one so far.

We just take a basis of this for any T for any linear transformation we are claiming that

this set will generate the image of this image, image of T.
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So, how to prove that? So, prove this trivial. So, basically we need to show linear a linear

combination linear span of this vector is basically image of T.

So, now this is a subset of this because if we take this, this is a we take this is a beta 1

beta 2 beta n. Now, if we take any linear combination of this, this will be subset of this.

Now, only thing we need to show that if we take a this is a image of T, if you take a beta

here then we have to show that this should be written as beta should be written as some

linear combination of this. So, that is important ok.

So, if you take a beta here we know there will be a alpha here which is mapping to beta

because that is the way we defined the image of T; so for a given beta there is alpha. So,

alpha is here, now we have seen that this is a basis of U this is the basis of U. So, alpha

must generate by this. So, alpha must be written as some a 1 alpha 1 plus an alpha n.

So, now, we should write this as T of alpha must be written as T of this set summation of

a i alpha i. Now, this is nothing, but beta and this is nothing, but summation of a i T of

alpha i. So, this is the beta can be written as a linear combination of this. So, this is true.

So, that means,  if  you take a basis from this  then it  will  the image of this  will  also

generate this range of T.

Now, these need not be a distinct set, it will be a distinct set and not only a distinct it will

be a linearly independent set if this kernel of T is only 0 vector, if T is one-to-one then it



will be a it will be it will form a basis of that image of range of T function in a range of T

set.
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We will take an example. So, we will take an example. The same example we will be

working on which we. So, we take a linear transformation from R 3 to R 3 and this was a

linear transformation this is going to x 1 plus x 2 plus x 3 then 2x 1 plus x 2 plus 2x 3,

then x 1 plus 2x 2 plus x 3 ok. So, this is we have seen this is a linear transformation.

Now, we going to find the range of this.

So, further we take basis of this U this is our U. So, we take the standard basis and this is

0, 0, 1. Now, we know this linear span of this will form the range of T.
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Now, so, linear span of T of that sorry T of T of epsilon 1 epsilon 3 this will form the

range of T, just now we have seen in the last theorem ok. Now, we have to find this. So,

the if we calculate this will be basically 1, 2, 1 and this will be basically 1, 1, 2 and this

will be again 1, 2, 1. So that means, image of T or range of T is basically spanned by

these two vector 1, 2, 1 and 1, 1, 2 and they are linearly they are distinct and also they

are linearly independent vector setup vector.

And this is the dimension of this is basically this is a subspace dimension of this is 2. So,

dimension of this is 2. Now, we have seen the dimension of the kernel is 1 and dimension

of this range set is 2 this is also written this is also denoted by R T the range said of

range of T R T and we know the null space of T, this is the R T a null space of this we

have seen the dimension of the null space is 1; so 2 plus 1, 3 which is the dimension of

the U.

Now, in general we want to prove that. In general whether this result is true or not so, we

want  to see that,  so that  we will  see in  a next  result.  So,  that  is  called  rank nullity

theorem.
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So, this is called rank nullity the rank nullity theorem. So, what this theorem is telling.

So, suppose we have a linear transformation from U to V. So, you have two vector space

U and V over the same field F and we know the kernel of T this is also so, we know this

is a linear transformation this is a linear transformation. So, it is a mapping form here to

here.

Now, we know the kernel of T this is also denoted by N T and this is a vector space we

know this is a subspace and the dimension of this subspace is called nullity. So, the

dimension of this kernel of T is basically called nullity.

And, we have seen that image of T this is basically also range of T, this is also a subspace

and the dimension of this subspace is called rank of T dimension of this subspace is

called rank of T.
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Now, this theorem is telling so, this theorem is telling a nullity rank plus nullity or nullity

plus rank is equal to dimension of U this  is called regularity  theorem. So, rank plus

nullity is equal to dimension of U we are going to prove this but we have to understand

this.

So, this is a subspace we have a dimension for this or some basis in this there are some

vector in the basis there are number of vector in the basis this is called dimension of that

and we have here the range R T now this is also a subspace. So, this has a dimension and

if we add these two dimension it will give as a dimension for the vector space V. So, how

to prove that?

Let us quickly try to prove this. So, we will just give the rough idea of the proof.
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So, there are few cases like case 1: if T is one-to-one ok; that means, kernel of T is

basically this one; that means T is one-to-one. So, if T is one-to-one then we have what

we have? So, we have the dimension of. So, this is basically N T this is basically N T.

So, the dimension of so, nullity is here 0 nullity equal to 0 and then what is the rank? So,

if it is one-to-one. So that means, any base for suppose you have a this is U. So, you have

a basis for suppose dimension of U is say dimension of U is say in. So, that; that means,

there are n vectors in the basis which are mapping to n victors over here.

So, T alpha was T alpha n and since they are forming basis. So, this will be also linearly

independent set of vectors and they will generate the vector space R T. So, that means,

this set if this is a basis alpha 1 alpha 2 alpha n is a basis of basis of U then this set will

also be a basis of R T also be a basis of R T. So, the dimension of R T will be then n. So,

rank is n and nullity is 0. So, rank plus nullity will be the dimension of V. So, this is case

– 1.

Now, case – 2 is if the image is the whole V.
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So, another case is case – 2 or this is the most general case like if this is a proper subset

of this.  So,  so, this  case – 3 is if  this  is the kernel of T is basically  U; that means,

everybody is mapping to 0 vector then this is also trivial. Then the rank is basically so,

then R T is basically only 0 of V. So, the rank is 0 and nullity is nullity is basically

dimension of U n. So, rank plus nullity is basically dimension of U.
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Now, case – 3 which is the proper subset of if the kernel is a proper subset of U. So, it is

not I mean non trivial subset. So, this is a most general case to prove this.
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So, for that  kernel  of T we take some basis  of this.  So,  we take some basis  of this

suppose alpha 1 alpha 2 alpha K. So, this is a basis of kernel of T. So, this is our U set

and we have kernel of T and these are now this kernel of T is a subset of U. So, we can

extend this to have a basis in U and U is a suppose dimension of U is a n. So, we can

extend this by adding some vector to make a suppose this is a basis of U ok, this is the

basis of U.

Now, we claim that this vector image of this vector will form a basis in the R T. So, we

claim that this is our claim T of alpha K plus 1 T of alpha K plus 2 T of alpha n this will

this is a basis of R T. So, if this if we can proves this if we can prove our claim if this is a

basis of R T then what is the. So, how many elements are there here? There are n minus k

element. So, that is the dimension of that is the dimension of R T which is basically rank.

And, what is the basis how many elements are there in the kernel. So, that is K. So, that

is the K is the nullity so, that means, n is equal to K plus rank. So, K is the nullity. So,

this is basically nullity plus rank. So, this is dimension of U.

So, dimension of U is basically nullity plus rank. Only thing, we need to prove our claim

that this will form a basis of R T.
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Now, we know how it will be form a basis of R T because we know this is the basis in U

if this is a basis in U, then we know that since this is a basis we know T of alpha 1 T of

alpha K and T of alpha K plus 1 to T of alpha n this will form a this will generate the R

T. So, linear combination of linear span of this is basically R T.

Now, but all these up to here they are all belongs to kernel of T. So, these are all basically

0.  So,  they  have  no  contribution  in  the  linear  span  of  this.  So,  basically  this  will

contribute in the linear span of this. So, that means, this will be L of this is basically L of

this is basically R T because these are all 0, 0 vector of V they are all going to 0 vector.

So, they have no contribution in the linear span linear combination.

So, now only thing; so this is a linear so, this set generates the R T. Now, only thing we

need to prove that this is a linearly independent set of vector. So, how to show this?
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So, to show this, suppose we take some say a K plus 1 T of alpha K plus 1 plus a K plus

2 T of alpha K plus 2 dot dot dot a K a n T of alpha n. Suppose, this is a we take this to

be 0, 0 vector in U.

So, now, this is basically if we this is the property of linear transformation an alpha n,

this is basically 0. So, now this must belongs to kernel of T because kernel of T means all

the vectors which are mapping to 0 vector. So, this must belongs to kernel of T now we

know the basis of kernel of T this those are basically alpha 1 alpha 2 alpha r.

So, this must be written as the linear combination of linear combination of alpha i is 1 to

K because alpha 1 alpha 2 alpha K up to alpha K forms the basis in the basis of the

kernel of T. So, from here we can take this side or these that side. So, we can write that a

1 alpha 1 plus a 2 alpha 2 plus a K alpha K minus a K plus 1 alpha K plus 1 minus an

alpha n is equal to 0 vector of U.

Now, this alpha 1, alpha 2 alpha these are basically the basis of U so, that means, they

are linearly independent set. So, that means, if their linear combination is 0, then all the

scalar has to be 0. So, this implies all the a is are 0. So, this implies this set is a this set

alpha K plus 1 dot dot dot T alpha n this is a linearly independent set of vectors. So, that

means, this will form a basis of R T the range of T. So, that will that is the proof our

claim. So, this is the proof of the rank plus nullity theorem.
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