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Welcome. So, we are continuing our discussion on how to improve convergence rate of

Matrix Solvers. That is given a matrix solver for a large matrix. What are the techniques

which can be applied over that particular given matrix solver and the convergence rate

can be improved. So, that we get faster solution.

So,  earlier  we have discussed about  preconditioning techniques  and this  session will

discuss on Multigrid methods.
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So, will focus again our discussion on what are the issues for convergence of iterative

methods. So, let us think of a unit cube over which Laplace equation is solved using

finite difference method. So, the geometry is already given and the governing equation is

a second order differential linear differential equation which is Laplace equation and that

is being used. We have all the known boundary condition we have to solve this using

computer methods. So, we will use something like a finite difference method and get a

set of equation difference equations which is essentially a matrix equation and we have

to solve that.



We need to generate finite number of solution points and or control volumes to write

discretize set of equations. So, this is a say this is a unit cube over which we take n points

in each direction and gain gate total n cube internal points for which you have to write

equations each point will have it is own equation and essentially we will get a matrix

equation. Depending on the number of points the matrix size will change true. If I takes

for example, if I take n 10 this is 10 by 10 by 10 total 1000 internal points are there. So,

the coefficient matrix will be 1000 by 1000. And if I take n is equal to 100 this will be 10

to the power 6 by 10 to the power 6 matrix.

So, the matrix size depends on the number of points and we need to take large number

points  in  order  to  have  better  accuracy  because  we  have  looked  into  at  least  finite

difference methods where the accuracy is a function between the of is a function of the

spacing between two adjacent grid points or nodes. So, if you increase number of points

this distance reduces and the code accuracy increases the solution is more close to the

physical solution. So, we often need to take a very large number of points or which will

need the large matrix to solve this sets of equation.

And now let us look into the number of iteration steps required and how the error that is

difference l 2 norm of difference between the solution vectors at different iteration level

reduces for a Jacobi point solver when in the same geometry we take different number of

grid points.

(Refer Slide Time: 03:10)



So, the first one is I have taken four points for internal points and all the outer boundaries

are Dirichlet boundaries I am not considering them. So, total 4 cube 64 into 64. Second

one we have taken so, total 4 cube points, the second one is where we have taken total 7

cube points and the third one we have taken I guess 12 squared into 12. So, 12 cube

points 144 into 12 yeah.

So, how that means, the first one is actually a coarse mesh which is very less number of

points  and the  errors  will  be  large.  Second one  is  little  finer  mesh which  has  more

number of points. Third one is a finest mesh we have considered.

Now, if we look into the number of iterations. The first one converged at 27 iterations

where we have less number of points. Of course, it will be because the number of steps

are also a function of the matrix size. So, there will be less number of steps. The second

one converged in 127 iterations. The third one converged in 409 iterations a lot more

iterations are required for the third one yeah.

And if I see how the error is reducing we will see that in the first one the errors started

from 10 to the power minus 2 and then after few steps see 10 into 10 to the power minus

3 10 to the power minus 4. Then came to 10 to the power minus 7 and then converge to

the value. In the second one it stayed a long at 10 to the power minus 7 the error is of the

order of 10 to the power minus 7. Then it went to 10 to the power minus 8 and so on as

the third one in 10 to the power minus 8 itself it stayed for a long time. No number of

iterations then it required to converge the error from 10 to 0 in the first one.

So, as we are increasing the matrix size the number of iteration steps increase it almost

scales with the matrix size with the solution vector. And as we go to a larger matrix the

reduction is error is actually very slow when we go to the final value of the error. The

error may be reducing very fast from 10 to 6, but if we have to reduce the error from 10

to the power 1.2 to 10 to into 10 to the power minus 8 to 1.1 to 10 to the power minus 8

that takes a lot of time. So, this is what we can look into the convergence pattern of the

solvers.
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And we can essentially  look into the convergence issues.  The convergence  for  large

matrices when we have lot of grid points the convergence takes large number of steps.

When you have increased this is convergence convergence.  When we have taken not

convergence I will corrected in the uploaded slide.

When we have taken a large matrix the number of steps for convergence is also very

high, but we cannot avoid large matrices because if we need a very accurate solution we

have to take a lot of internal points which will give us a large matrix. The smaller order

errors reduced slowly, that is that when the error is of the order of 10 to the power minus

2 it is probably halved to from say 0.9 into 10 to the power minus 2 to 0.45 into 10 to the

power minus 2 in say 10 states. But if I think the error will get half from 0.9 into 10 to

the power minus 8 2.45 into 10 to the power minus 8 it will take probably 70 steps.

That means when the value of the error is small the convergence is slow. So, there is

something like a fluctuating function which is damped very slowly because there is an

asymptotic marching to the right solution the rate of damping of this fluctuation function

becomes slow when you go close to the actual solution. But that is again for the large

matrices for the small matrices the error reduction even at 10 to the power minus 8 level

is much faster than a large matrix. There is another thing to notice. Also during each

iteration the number of operations are more in for large matrices. This is how also very

important thing because we are dealing with an n by n matrix each iteration probably



takes n number of operations in subtraction addition come considering that few n or n

square number of operations.

When we are having a large matrix so, n is very high in a number of our operations

during one particular step is add then when the matrix is small. So, smaller matrix will

require  less  number  of  steps  to  converge  as  well  as  in  each  steps  there  number  of

computational operations is small.  So, in total a smaller matrix will  require very less

number of steps if we consider the number of iterations as well as computational steps in

each step in iteration.

However I said we cannot avoid having large matrix things would have been very great

for us if we would have been able to solve everything with a large matrix with a coarse

grid because the number of computational steps would have been less. But we really

cannot  operate  at  small  matrices  or  code  strides  because  the  accuracy  will  be

compromised there. So, you have to operate with large matrix which is slow to converge

as well as in each step there are a lot of operation. So, we will see how both of these

things can be tackled.

Now, if I go back to because we are discussing here with Jacobi iteration. If I go back to

Jacobi iteration perspective remember with this discussion will continue based on Jacobi

which is the probably most basic iterative solve solver. But similar discussion is also

valid for much developed iterative solvers like by conjugate gradient or GMRES, but let

us even all the precondition solvers too.

But let us go to the very basic Jacobi solver. And at this lecture I will rather try to give

you some key concepts on multi grid methods. As we discussed for pre conditioners the

detailed of multi grid methods we will take lot more lectures and lot more deliberations

many serious complicated mathematical analysis has to be done also which we are not

discussing here we will just discuss over the concepts of multigrid method.

So, you focus our discussion only to Jacobi solvers where these concepts can be at least

reviewed with certain result. So, in a Jacobi iteration solver the typical iteration step is

given as k plus 1th value of x is equal to G x k plus f. Where this is basically again

comes from solving x is equal to b, but G is formed using some splitting of a we have

discussed it several times we will discussing a few of this method starting from basic

iterative solvers to pre conditioner several times we have discussed this.



So, G is called the iteration matrix. The system will converge for any initial guess x 0 if

spectral radius of G or the modulus of the largest eigenvalue of G is less than equal to 1

rather less than 1. The convergence factor is given as rho is equal to rho G or the spectral

radius of G. And lower the convergence factor faster the convergence. Convergence rate

is actually kind of having an inverse relation with convergence factor. So, if rho G is high

convenience factor is high that means, number of iterative steps will be high if rho G is

less or convergence factor is small number of iterative steps will be less.

So, we essentially for having a faster solution method rho G should be small, but rho G

again depends on the actual matrix a. So, given the matrix A we cannot do anything with

spectral radius of G except using preconditioning technique where instead of A x is equal

to b we are solving m inverse x is equal to b where. For general case when x is equal to b

itself has to be solved we really cannot do anything with G, but if I have two matrices

one matrix solves faster than the other matrix. We can check the spectral radius of G for

these  two  matrices  and  the  matrix  which  will  have  smaller  per  spectral  radius  will

converge faster which will have smaller convergence factor will converge faster.

So, we can look into different matrices created out of the same geometry and check their

spectral radius of the iteration matrix. And we will see that which matrix will converge

faster and why is it. So, lower the convergence factor faster is the convergence.

Now,  we  consider  a  finite  difference  matrix  came  out  of  using  finite  difference

approximation on a partial differential equation with grid spacing h and h is equal to 1 by

n or 1 by n minus 1 by the way you define n. So, it is a around one by n n is the number

of points along one particular direction.

And then if I write down the 2 d Laplacian finite difference matrix and split it for a

Jacobi iteration. We will see that the spectral radius of the g matrix is of the order of 1

minus order of h square. So, if from Laplace equation if I try to get a finite difference

matrix the iteration matrix in Jacobi or even for Guass seidel we will have one minus

order of h square spectral radius.

So, in case I have a coarse grid where h is large the spectral radius will be small. In case I

have a large measures h is small the spectral radius will be large. And precisely that is the

reason that large matrices will take lot more steps to converge because this way they

have a large spectral radius. Because h is 1 by N if N is high this value is small. I if n is



small number of points is small this value is sorry if N is high this value is also high

because 1 minus 1 by n square and if n is small this value is small. So, it converges first. 

So, this is the precise point that if we have large number of mesh points the iteration

matrix will have a large spectral radius therefore, the convergence factor will be high

convergence rate will be slow if we have a small coefficient matrix and small number the

which will come from considering small number of mesh points in the geometry. The

spectral radius of the iteration matrix will be small and therefore, convergence will be

faster.
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So, rho G is of the order of 1 minus h square h is equal to 1 by N number of spacing in

one N is the number of spaces in one direction.

 In case with all Dirichlet condition in our case with all Dirichlet condition, but we are

considering if there are N internal point the matrix will be N cube by N cube. So, the

number of the convergence will depend on the fact on this number N what are the total

number of internal points in one direction. If I assume that all points have same number

of all direction same number of points.

Lower the value of flow faster the convergence that is what we discussed that. If we can

reduce this value we will get faster convergence. To reduce this value this should be

small that means, this number should be high in order to have a high number here this N



should be sorry this  should be small.  So, this  should be rho G small.  So, 1 minus h

square should be a small number in order to have 1 minus h square small h should be

high in order to have high h n should be small we can we can check it out.

So, low number of points N and larger grid spacing will give faster convergence. And

that is exactly what you have seen that when you are taking less number of points 4

points in each direction the convergence is in some 27 points. And we are taking 12

points in each direction the convergence is obtained after 500 600 iterations.

However we are asserting this several times as the accuracy improves with smaller h or

larger N large N systems are often to be used. So, the question becomes I know that I

have to use a large grid framework. Which will give me a slower convergence because h

is being small therefore, spectral radius of G matrix is small it will give me a slower

convergence. So, what should we do to improve convergence of this? One idea is using

preconditioning technique. Is there something else which is incorporated in the method

itself how we are looking into the error and the convergence factor.

Something  can  be  done  that  and  one  of  the  technique  for  doing  this  is  a  multigrid

method. Where instead of looking into small values of n only we will club number of

grid points and get another background mesh which has large which has a large h and

solve do some of the iteration on the background mesh reduced residuals and then come

back again back to the finer mesh what we are going to discuss later. So, the question is

that how we can improve the convergence even with the smaller h.
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So, will again look into the convergence pattern for a large matrix it is a matrix of 1353

by 1353 it is the different matrix where is again a large matrix. And we see that initial

steps it is from 1 to 0.22 78 percent reduction in error is in one step then even when we

are say around 10 to the power minus 2 9.89 to 10 to the power minus 2 to half of it

which is maybe 4.25 to 10 to the power minus 2 it to 5 steps.

Right and the error is reducing by 4.404. If we go later of the iterations say 51. 1.13 into

10 to the power 1.09 into 10 to the power minus 4 2 1 into 10 to the power minus 4. So,

error is reducing at the rate of 10 to the power minus 6 that took 1.09 to 1 that took

around 10 steps.

So, the rate of reduction of error reduces as number of iteration increases; that means,

that if I look into the number of iteration verses the x minus x k plus 1 minus x k l 2

norm. Finally, this should be 0. And this is initially high and then it goes down very

slowly very slowly it goes down there is an asymptotic nature.

So, it is a curve with varying rate. And at each iteration what is happening the error is

getting smoother there are some small fluctuations in the value if we go to the previous

time  step which  is  the  difference  from the  converge  solution.  And this  difference  is

coming to 0 and there and the solution is getting smoother in each iteration. However,

this smoothing so, maybe I have this geometry say x is equal to 0 to x is equal to l. This

will  be  maybe  my  final  solution.  And  I  will  see  that  the  solution  as  I  have  given



boundary condition is initially something like this. Then it reduces something like this

then it further reduces something like this and finally, converges.

So, how this fluctuation of the solution is damp to the final solution that is important.

And we are seeing these fluctuations reduce very slowly with time when there are small

amplitude fluctuations. And the small amplitude fluctuations because the error is small

are also long wavelength fluctuations. So, we will see what is the how are this fluctuation

wavelengths.

(Refer Slide Time: 20:56)

The error being a spatial function can be expressed as a Fourier expression any special

function we can expressed as a Fourier expansion in space. Which is x minus x 0 is equal

to e to the power A to the power m e to the power i k s s is a spatial coordinate it can be x

y z x y z as if we think that x is the solution variable. So, s 1 s 2 s three are three different

spatial coordinates. 

So, it is like a Fourier function the errors with different frequency are minimized through

the iteration. So, in a sense we can say that say I have initially the this should be my right

solution initially I start with the boundary condition I start with a solution like this. Later

the solutions will be something like this. Later these solutions will be something like this

and so on.



So, different there are solutions called with different frequencies. There are some high

frequency solution there are some low frequency solutions which are getting minimized

through these iterations.  So,  this  k is  for different  wavelength different  frequency or

wavelength.  This  k  is  for  different  wavelength  which  is  getting  minimized  to  the

iterations. If I have a coarse mesh this is how the solution will look like. And I will get

the converge solution in each point. If I have a fine mesh then the solution is a much

smoother one.

So,  what  I  am doing  with  each  iteration  actually  smoothing  the  solution.  And  this

smoothness  is  done  through  some  the  it  is  the  smoothness  function  has  its  own

wavelength  and  frequency  which  are  taking  care.  And  it  can  be  seen  that  the  final

solution which if I have a large number of mesh points I will get a very fine solution like

this. These fits lot of long wavelength solutions because it is trying to fit a very nice

continuous  and differentiable  curve  of  very  high  order  continuous  and differentiable

curve over number of points.

So, the final smoothness this smoothness comes through a large wavelength solution.

And this large wavelength error and this large wavelength errors are most difficult to

minimize.
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Each  frequency  converges  at  different  rate.  Higher  frequencies  or  lower  wavelength

errors converge the fastest. The solution between two grid points so, it is a very small



wavelength at one time step this can converge. Errors low frequency errors with low

frequency or large wavelength which is trying to smooth the solution over the entire

domain converge in the slowest way.

Convergence and therefore, convergence is held up by long wavelength low frequency

components of the solution. The solution which is converging among many grid points as

a wavelength may of the order of number of grid points that error is reducing in the

slowest way.

So,  the  large  wavelength  low  frequency  component  error  is  the  bottleneck  thing  in

getting the solution. And that is what creating very slow convergence pattern at that 10 to

the power minus 8 level because it is trying to just smooth the solution in between a large

number of grid points and trying to fit a very less amplitude, but large wavelength and

also low frequency large wavelength a smoothness over the error or trying to correct a

large wavelength low frequency error.

Each iterative procedure has different rates of convergence for each range of frequencies

of. We will show something for Jacobi you will see something you will see from Gauss

Seidel something you will see from conjugate gradient, but essentially the if we have

large number of grid points the final smoothening will take a lot of time. Each point will

come to close to some of the ballpark value, but the solution will show lot of roughness

and wavy nature because it has not been smoothened before we iterate and converge for

the long wavelength solutions. And this long wavelength solutions take lot of time for all

type of all these solvers.

So, essentially we need to find out some methodology to converge the long wavelength

solvers. And this one methodology is called a multigrid Method.
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That is the idea is to use different grid size to solve same problem. Why? Because what

is high wavelength say I have 3 4 points. And there is a smoothness function there is a

smoothness function like this which is a high wavelength. So, this is h if we compare

with h this is a very high wavelength. And it will take a lot of time to smooth it.

But if I use a different mesh size 1 and 2 this is and now this is my h the wavelength is

actually of the order of h it is some this the wavelength was 3 h here the wavelength is h.

So, a high wavelength solution which is a high wavelength solution for a finer mesh is

actually a lower wavelength solution for a coarser mesh. And that is the trick to handle

large matrices using Multigrid Method.

Because there is a geometric method you already know the geometry over which you are

solving the equations generate a large grid spacing background mesh over it. Solve the

equations on that. So, that faster you can very fast you can solve the large wavelength

solutions.

And then go back to the final mesh and correct the smaller wavelength solutions errors

which are faster to converge.
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And that  is  the  trick,  use a  coarse  background grids  to  reduce  the  long wavelength

solution first use a coarse background grid where the lord long wavelength small N and

large h. Which is long wavelength for a finer mesh will be a short wavelength for coarse

mesh. So, use a coarse background grid to solve the long wavelength errors.

And then use finer grid to reduce shorter wavelength errors and to maintain the accuracy.

So, basically this goes into using 2 3 different multiple layers of grid different grids to

solve same problem. You have a same partial differential equation you write a matrix

equation with different grid size and. First solve it in coarser mesh and then come to finer

mesh and get better accuracy. And then do some iteration between the mesh levels. So,

that the final solution is smoother as well as converges to the right result at the finest grid

level.  And  that  is  why  we  called  it  a  Multigrid  Method.  So,  we  look  into  the

implementation of Multigrid method in the next session.

Thank you.


