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Welcome. We are looking into preconditioning technologies, preconditioning techniques

I  should  say. And we have  looked into  how precondition  conjugate  gradient  can  be

obtained or for symmetric  matrices  how preconditioners  can be obtained, so that the

precondition matrix also remained as symmetric positive definite one. And looked into

two different variants of conjugate gradient: the split precondition conjugate gradient and

the left-precondition conjugate gradient. 

We have not discussed in detail how the preconditional matrix is obtained till now, but

we have seen that and different algorithm slightly different from the original algorithm

can be proposed, if we think of a precondition system of equations, where the inverse the

precondition  matrix  M inverse or part  of the precondition  matrix  l  inverse,  l  inverse

transpose are already available with us how these algorithms will look like. Now, we will

see for general  matrices,  where we cannot  apply conjugate  gradient,  which are non-

symmetric  matrices,  where  still  we  can  apply  a  Krylov  space  method  like  GMRES

preconditioning can be done.
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So,  we  start  with  left-preconditioning  of  GMRES.  The  left-precondition  system  M

inverse A x is equal to M inverse b. Now, instead of solving A x is equal to b, if we are

solving M inverse A x is equal to M inverse b for GMRES as we have to evaluate the

basis vectors of the Krylov subspace K m, we will find out the Krylov subspace for r

naught, M inverse r naught, M inverse A r naught instead of finding sorry r naught M

inverse A r naught M inverse A m minus r naught.

So, instead of finding K m, this will be K m of M inverse M inverse A r naught. For A x

is equal to b, we use the Krylov subspace of A, r naught. Now, as we are solving M

inverse A x is equal to b, we will use Krylov subspace of M inverse A r naught. So, this is

this there will be an M inverse A r naught then up to M inverse A to the power m minus 1

up r naught. Now, Krylov subspace, we will change. And we will use something like a

Arnoldi modified Gram-Schmidt to obtain the basis vectors for the Krylov subspace of

this for this particular Krylov subspace. All the residue vectors and their norms will be

found using the preconditioned residual Z is equal to M inverse b minus A x.
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So, the Krylov subspace vectors are found for a, the Krylov subspace vector are found

for M inverse A and r naught, and the residue vector z where the new residue vector

rather r naught is equal to M inverse b minus A x 0. This is the new residue vector. And

that is how so instead of solving A x is equal to b, we are solving M inverse A x is equal



to b in a GMRES. There is no other change only the idea is that solving M inverse A x is

equal to b. um

So, wherever we have we will be replaced by M inverse. And initial r naught finding is

that then the orthogonalization step will require finding w, which was in GMRES finding

A v  j.  Once  you  once  v  is  on  one  of  the  basis  of  the  Krylov  subspace,  we  are

orthonormalizing the other basis is w will be M inverse A v j. And it will follow the

Arnoldi Gram-Schmidt type of steps.  And then we will  compute the elements of the

Heisenberg matrix h, which is l 2 matrix of w, and then using the l 2 norm of w will

normalize the v j, so it so that it becomes an the set becomes an orthonormal set.

And we will define the V m matrix H m. Finally, y m will be obtained by a minimization

of beta e 1 minus H bar m y, these algorithms we have looked earlier. This is very similar

as Jacobi algorithm, and x m will be updated such that. And one once we are satisfied

then stop, otherwise you update x the gaze value x 0 with x m and continue with this

loop.  So,  this  is  nothing  but  modifying  the  GMRES considering  that  we  instead  of

solving A x is equal to b, we are solving M inverse x is equal to b.

While doing so we get two important steps here. One is a M inverse first M inverse b

minus A x 0, which is one time step at least which you have to do it ever. So, M inverse

not once time step at every iteration you have to do. So, at every and also M inverse A v

0.  So,  each  every  iteration  requires  a  evaluation  of  the  matrix  M inverse  or  of  the

precondition matrix M inverse.

So,  it  is  very  similar  to  conjugate  gradient,  whether  the  problem is  very  similar  to

conjugate gradient method. In conjugate gradient method, we had the requirement  of

finding  M  inverse  or  l  inverse  transpose  and  multiplying  it  with  certain  vector  for

preconditioning, here also you have the requirement in the preconditioning steps itself.

So, this can be thought of a finding M inverse A matrix,  and this can be thought of

finding M inverse. So, two operations are there actually. 
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Right-preconditioned conjugate gradient, we have A M inverse u is equal to b and u is

equal to M x. The Krylov subspace is now of A m inverse instead of A inverse. So, A it is

r 0, A M inverse r 0, A M inverse this A is not here, A M inverse A M to the power minus

1 r 0, this is called Krylov subspace. We have to find out K m of A M inverse and r 0.

And r 0 is the residual of this particular matrix system. r 0 is equal to b minus A x 0,

which is b minus A M inverse a u 0. 
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The initial residual is this. Now, once we get all the basis of Krylov subspace, and the

corresponding weights eta i. So, we can find out the final solution of this equation of A

M in rather we will find we have the equation A M inverse u is equal to b. So, once we

find out all  the basis of the Krylov subspace of A M inverse,  and the corresponding

weights to get the final solution we can write u m is equal to u 0 plus the basis into

certain coefficient on that.

So, the final solution will be will lie u will be u 0 will be in an affine subspace of the

affine Krylov subspace, which is u 0 plus this vector, and v i's are the basis of Krylov

subspace of e 1 of A M inverse and r. So, this is v i’s are the basis of Krylov subspace,

and eta i are the weight which is eta i are the elements of the vector y m, which obtained

after minimization of beta e 1 minus H bar m.

This will give that x m, so x is equal to we also know that x is equal to M inverse u. So,

we will multiply M inverse here and we will get x, x m is equal to x 0 plus M inverse v i

y i eta i. So, once we get the weights eta i, which are the elements of the vector y m, and

the  basis  of  Krylov  subspaces  are  formed.  We can  directly  find  out  x  m  without

evaluating u. So, the algorithm will become x m is equal to x 0 plus M inverse V m y m.

The original algorithm was x 0 x m is equal to x 0 plus V m y m, here it will be x 0 plus

M inverse V m y m. Important thing is that we again have to go into a matrix inversion

or a matrix solution of M inverse, we again have to find out M inverse, here we are stuck

with the same problem.

Another  important  observation  is  that  exactly  same  as  our  old  method  last  discuss

method,  which  is  split  precondition  conjugate  gradient  or  if  we  think  of  right

precondition conjugate gradient. We do not have need to we do not need did not need to

evaluate u there. Here also you do not need to explicitly evaluate u rather we can directly

find out x, if we have find out the basis vectors of the Krylov subspace A M inverse and

r.  The algorithm does  not  explicit  need explicit  evaluation  of  u  vector,  x  m can  be

directly computed using this. 
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So, look into the right precondition GMRES algorithm, it starts with the initial steps. And

now the basis vectors of v is computed by A M inverse, so an A M inverse step is needed.

And remaining  all  the  steps  are  exactly  same as  the  original  GMRES, except  when

finding M x m we need M inverse. So, these two operators are required A M inverse and

M inverse.  So,  we  kind  of  every  time  we  encountering  the  same  problem that  the

preconditioned  equation  look  very  similar  to  the  precondition  algorithm,  look  very

similar to the older algorithm. Only we have to find the operator, so at M inverse is

included,  there  the  preconditioning  matrix  is  included.  So,  how  will  you  find

precondition matrix that becomes the important question here.

However,  we  have  demonstrated  that  different  preconditioning  preconditioned

algorithms can be obtained for both conjugate gradient and GMRES. And the algorithms

are very similar to the older algorithm. So, if you already have a code, we can very same

with very less effort,  we can convert it  to a precondition code. Only thing this  A M

inverse and M inverse are to be found out.

Now, one  question  is  that  that  if  A M inverse  is  very close to  identity  the problem

becomes much simple and the condition numbers also improve, because i identity matrix

has a condition number 1, so condition number also improves and we get faster solution.

So, how can we find out M inverse, which is very close to a that is a one important thing.

Another thing because we need to do M inverse in certain calculations not A M inverse.



A M inverse is a one issue, M inverse is a another issue. These two things have to looked

in that we have to find out an A M inverse or M inverse say for the left-preconditioned

GMRES or for conjugate gradient, which was a good condition number.

So, if M is close to A, the condition number will be in close to one, and the solution will

converge faster. So, this is one issue that M should be very close to A, so that M A M

inverse or M inverse is close to one. The other issue is that A M inverse is to evaluated in

a form, so that this equation can be well solved. And we will see we already have some

idea that M is of l LU if M is of LU form, the solution of M equation involving M

inverse is much simpler. 
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All the preconditioning techniques show nearly same convergence pattern if M is not ill-

conditioned for left right split preconditioning all these things. Split preconditioning may

help,  where  A  is  nearly  symmetric.  To  calculate  w  during  Arnoldi  steps,  left-

preconditioners use the inverse-matrix M inverse A, and write preconditioner use A M

inverse. So, this is important that if M inverse is close to A M is close to A, M inverse is

close to A M in A inverse, this will be identity and we will get very first the convergence

of this method. It is useful to calculate an M, which is nearly equal to A. If M is equal to

LU, m should be close to LU factorization of A. 
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There  is  another  method called  flexible  preconditioner, where the preconditioner  can

change in every iteration. Instead of going with a fixed M, I can changed M at different

steps, so that the action M j inverse on vector V of Krylov subspace is now no longer

applied to the entire  span of V m j plus 1,  because M j inverse is calculated at  one

particular step of the iteration. So, it is in application it is not applied over the over the

entire Krylov subspace of vectors.

Rather the solution is obtained as x m is equal to x 0 plus y m Z m. And the Z m the

column vectors of j is found out as M j inverse v j. So, it uses only one particular Krylov

subspace vector and the preconditioner used at that particular step, which give Z m is

equal to V m plus 1 H bar m. y m is obtained to as a minimizer of beta e 1 minus H bar

m like any standard GMRES method.
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Now, comes the issue that how the preconditioners can be chosen. It may be good to

obtain  a  symmetric  preconditioner,  especially  when  A matrix  is  symmetric  or  near

symmetric. A preconditioner like M L transpose will be of use we have seen that from

our idea discussion in conjugate gradient method. As M inverse, A M inverse and M

inverse A are often to be computed, a preconditioner matrix M, which is nearly equal to

A is often sort for, because A M inverse and M inverse A will be close to identity there.

And that is the driving part of the algorithm, because we find out Krylov subspace of A

M inverse and M inverse A and the residual.  If  this  is close to identity  the problem

becomes much simpler, this is straightforward.

This further necessitates having LU transformation of A as preconditioner, because we

need some sort of LU transformation of to get M inverse, M inverse will be an LU. And

A M inverse and M inverse A will be close to identity. So, a LU transformation of A, if it

is obtained that can be the best preconditioner. And we can see if M is equal to l A of LU

that means, M inverse is basically A inverse, the problem becomes an solution of an

identity matrix and should be done in one step.

So,  even  if  we  cannot  get  exact  LU  transformation  of  u,  because  A because  LU

transformation is a costly operation, we should try to get a near LU transformation of A.

The preconditioner may change at different iteration levels which you have seen from

flexible  GMRES.  So,  at  different  iteration  levels  we  can  try  to  recompute  the



preconditioner, which is also possible, if we are using flexibility GMRES. It might be

well avoided to explicitly evaluate the precondition matrix M, rather the operators M

inverse and A M inverse at different stages, and how are the effect of the operators in this

solution that can be computed. So, instead of computing the M, evaluating the M storing

it  somewhere,  we should  rather  see how is  the  matrix  product  of  A M inverse  into

something or M inverse into something can be directly used. 
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So, now we will look into few preconditioning methods. And one is called a Jacobi type

preconditioner, and that is that we look into how M can be evaluated using Jacobi or

SOR iterations can they be used as they be used as preconditioner. The general form of

an iterative step is the M x k plus 1 is equal to N x k plus b, which is M minus A x k plus

b. For Jacobi M is equal to the diagonal matrix, N is minus E minus F. For gas Gauss-

Seidel M is equal to D minus E, N is equal to minus F. So, D is split into upper the

matrix A is split into diagonal upper triangular and lower triangular matrix. This is we

have done in when long back when you are discussing about basic iterative methods.
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And iteration step is written as x k plus 1 is equal to G x k plus f. G which is equal to M

inverse N is called the iteration matrix and f is equal to M inverse b. If the iteration

converges, we get x at the converging step we will get x is equal to G x plus f or the

equation will be I minus G x is equal to f, which is same as if we look into this splitting

M inverse A x is equal to M inverse b. So, we got it that converging Jacobi or Gauss-

Seidel iteration gives us exactly same what we are looking for as a precondition system

of equation. So, if instead of solving A x is equal to b, if we can do few Jacobi iterates

and get a M inverse A x is equal to b, which will be already a precondition system of

equation. And we will probably have faster convergence.

The other thing is that how will M inverse look here. And specially if we can have a LU

decompose form of M inverse M inverse or also you can see whether M inverse is close

to A, if M inverse is same as A this is x is equal to A inverse B, we have already arrived

at  the  solution,  so  that  we  will  also  look  into.  But,  this  equation  is  already  a

preconditioned equation, which is the converging step of Jacobi iteration or Gauss-Seidel

iteration.

So,  as  we  use  Gauss-Seidel  or  Jacobi  iterates,  we  are  actually  preconditioning  the

equation  system.  The above equation  is  the precondition  form of  A x is  equal  to  b.

Hence, Krylov space solvers can be used to solve this equation. So, one very is very

smart  very  quick  approach  will  be  do  few  Jacobi  or  Gauss-Seidel  iterations,  get



something like an M inverse A x is equal to M inverse b. This M inverse is not exactly

same this is as your, I minus G M inverse A, because you one unless convergence you

have not reached into x is equal to G x plus f, but this will be close to that. So, this will

be a precondition system and solve it using Krylov space solvers. 

So, the matrix M inverse obtained through Jacobi or GS iteration can be chosen as the

precondition, and that is the another idea that M inverse that which is the Jacobi iteration

matrix I minus G matrix that can be chosen as a preconditioner and can be applied in the

Krylov space based solvers conjugate gradient or g GMRES. This M inverse, which is I

minus G can be taken and applied there. 
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Now, we have to see whether this is symmetric also, because symmetricity is recovered

in  some  cases.  A symmetric  method  can  be  thought  of  symmetric  successive  over

relaxation  steps.  We  have  discussed  about  successive  over  relaxation,  but  this  is

successive over relaxation combining two steps. One is combining the lower triangular

already updated part of the vectors. And another if updating the other with other elements

of the vector, and then getting the final update using this updates here. So, this is the so

SOR is broken into two half steps, which is called symmetric preconditioning. It w is

equal to 1, this give a symmetric Gauss-Seidel or SGS step. And the matrix M obtained

from SGS is D minus E D inverse D minus F.
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If we look into the M matrix the M inverse A that M matrix A is equal to m minus n, the

M matrix obtained from SGS is D minus E D minus E, which is the lower triangular

matrix. D is a diagonal, so D inverse is a diagonal, so this is a lower triangular into D

minus F, which is an upper triangular matrix. So, M SGS if we use symmetric Gauss-

Seidel that is symmetric successive over relaxation with omega is equal to 1, we get an

M matrix which is of LU form. L is equal to D minus E D inverse, which is I minus E D

inverse. U is equal to D minus F. 

Now, if we have to find out z is equal to M inverse v, some M inverse operation has to be

done. The first operation will be I minus, because this is a LU. So, L w is equal to v,

which is I minus E D inverse w is equal to v, and because this is lower triangular matrix,

the there will be exactly n steps to solve this equation. And the next step will be the U

bar  D minus  F  sorry  D minus  F  z  is  equal  to  w, which  will  give  us  this  is  upper

triangular, this will be again n steps. So, very quickly we can get solution of z is equal to

M  inverse  a  v,  if  we  have  the  M  SGS  form  the  LU  decomposition  through  SGS

preconditioning.
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The operator M inverse A will be computed through the SGS iteration steps, M is equal

to LU. And then if we write, so this will become that means, that as we will do some of

the SGS iterations, we are actually using applying the operator M inverse S. We do not

need  to  explicitly  find  out  M  inverse  and  multiply  it  with  A.  Some  of  the  SGS

preconditioning steps, we will take care of M inverse A operation multiplication or the

operator is already updated.

Now, this M inverse is not exactly M inverse. So, if we find out M SGS and A minus LU

this is a LU A minus LU, we get a solution which is E D minus E D inverse F. So, this is

the error in the LU decomposition.  The LU decomposition of M is not same as LU

decomposition of A. There is some difference, which is minus E D inverse F. And if

these as these A is a diagonally dominant matrix, if D is much larger, this is a small the

values of this matrix are smaller. So, we can get small error here. And we will say that

this is not a complete LU decomposition rather than incomplete LU decomposition of A.

However, a preconditioner matrix can be evaluated from this and applied to solve the

equations. So, the present LU decomposition, as obtained by an SGS preconditioner it is

not a complete LU decomposition of A matrix. So, we can use SGS as a preconditioning

technique  or  symmetric  Gauss-Seidel  as  a  preconditioning  technique  for  applying  in

conjugate gradient or GMRES type of solver. We can obtain the M inverse A steps as we

brings few SGS iteration steps on the equation system. And M inverse if you have to find



z is equal to M inverse w, that also can be very easily found out as M is of already in a

LUr of l LU shape. 
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So, and this we saw that this is an incomplete LU factorization.  In general,  and ILU

factorization process computes a sparse lower triangular matrix L. So, we will come to a

general  definition  of  LU  ILU  or  a  incomplete  LU  factorization.  In  general,  ILU

factorization process factorization process computes a sparse lower triangular matrix L,

then another sparse upper triangular matrix U all for a general matrix A.

Similar thing we obtained from the SGS preconditioning also. The exact form of lower

triangular matrix and exact form of upper triangular matrix we obtained from a general

sparse matrix A, so that the residual R is equal to LU minus A, which is a residual that

certain satisfies certain constants. One constant is that we might, because this is a sparse

matrix, similarly R will also be a sparse matrix. And we might like to have zero elements

in some locations  of our matrix.  So,  it  will  have certain advantage in storage of the

matrix, and certain advantage in applying the matrix.

This  is  the  general  idea  of  LU  incomplete  LU  factorization  that  complete  LU

factorization  is  difficult,  it  needs  to  run  gauss  elimination  like  steps  for  n  queue

operations. So, use some other method like a SGS preconditioning or like first few steps

of Gauss elimination you run and get, few of the rows to be of LU form. So, some of



these methods were an incomplete LU decomposition is obtained, and which will have a

constant that some zero elements are obtained in some of the locations.

ILU preconditioning is obtained by running a small number of Gauss elimination steps

on matrix A snd then dropping few off diagonal terms to maintain the particular zero-

pattern. So, we said like few gauss eliminate and few gauss elimination steps, and drop

the few off-diagonal terms to get particular zero- patterns, because we are not getting

exactly LU decomposition of A.

But, we are getting two matrices which are of L and U pattern and A minus LU can have

some error, and that because exact LU is a obtained we do not need to do anything the

solution is obtained M inverse A is equal to identity. When exact LU is not obtained, still

M inverse A is close to an identity matrix in a sense that the condition number is very

close to one, so that will also work.

And that is the idea of ILU preconditioning runs something like a Gauss elimination type

of method, and drop few of the off-diagonal terms to get a particular zero-pattern in the

residual make matrix. And also to get low a LU form of the precondition matrix. And

there are several methods like static ILU, which is basically running Gauss-Seidel for

few steps ILU IKJ, which is reordering the LU decomposition method. ILU 0, where

there will be no extra digits added in the final LU matrix. A and LU will have a almost

similar sparsity ILU p, ILU-Threshold, ILU-Crout different methods are there.
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And we can see from Yoused Saad book, what is the effect of preconditioner when we

what is the advantage,  when you apply preconditioner, GMRES is applied over three

different matrices. One is a finite difference 2D matrix or finite difference over a 2D

geometry  matrix  obtained from finite  difference  over  the  2D geometry  of  a  integral

diagonal matrix. A septa diagonal matrix finite difference obtained over 3D geometry.

And a ORS, which is the (Refer Time: 28:56) structured geometry. 

In the first when we do not apply any preconditioner, the matrix this is a little larger

matrix 100 by 100 type of matrix. It took 95 iterations for the first case, where number of

flops were three 3841 kilo flops into 10 to the power 3. To get and residue all of the order

of 10 to the power minus 2 and error is 0.1. F 3 D the other matrix took 67 iteration. ORS

took 205 iterations to get certain value of residual and error we said that its close to

convergence.

And the number of Kflops is thirty eight hundred 11862 9200. When we apply SGS

preconditioner  from 95,  the  number  of  iteration  reduces  to  238.  The  kilo  flops  um

performance is almost half of that while maintaining a residue and error, actually of all

almost  of same order a little  smaller  here you can meet  SGS. Similarly, F3D in the

number of iteration from 67 goes to 20 to get similar order of convergence. From ORS

from 205, it reduces to 110. So, almost half or more than half number of iterations are

required. And also substantial improvement is obtained in terms of kilo flops. It does not

exactly scale with the number of iterations, because some preconditioning steps some

SGS iterative steps are already added.

So, exactly does not scale like that, but a high a significant decrease in the computational

over step steps flops, and the number of iteration steps are improved. When you use ILU

0, the performance is further improved, especially from ORS from110, it goes to 20. So,

instead  of  the  SGS  if  you  used  Gauss  elimination  type  of  LU  decomposition,  the

performance  specially  for  ORS  for  non-structured  sparse  mesh  sparse  matrix  is

improved. And if you use further improved ILU, which is ILU-threshold pivoting, which

was taking 205 steps in ORS, it now takes only 6 steps. And it was taking 9200 kilo

flops, now it takes 341 flops.

So, a huge improvement in performance can be obtained. So, preconditioning if properly

computed and properly applied over Krylov space base solvers, can give us extremely



for solvers. However, we have now we have discussed some ideas about preconditioning,

how the solvers are modified if preconditioners are obtained, and some very basic ideas

how to obtain preconditioning. But, the evaluation of precondition are especially ILU tp

type of recently developed preconditioners, need more involved mathematics and some

of the graph partitioning type of approach that how you will keep the properties of LU at

certain level, how will you minimize the residual etcetera, which you have not discussed.

But  we  try  to  demonstrate  that  applying  preconditioners  can  heavily  improve  the

performance  of  a  Krylov  space  solvers.  And  you  can  see  that  what  was  taking  95

iterations take a 18 iteration, and what was taking 205 iterations for a very much sparser

matrix takes only 6 iterations to solve. So, and magnificent improvement in performance

can be obtained if  preconditioners  can be applied  properly, because the conditioning

number of the solution matrix is can be very well adjusted, so that it comes very close to

1. And in very less a few number of steps we get the right solution.

So, I try to give you a brief overview of preconditioners, but it actually requires much

more discussion can be probably module itself in a course can come as preconditioner 2-

3 weeks, one can discuss over the preconditioners. And however, I think this gives one

route  to  a  obtain  very  good  performance  of  Krylov  space  based  matrix  solvers  or

accelerate the matrix solvers to get to show great performance one of the demonstration

is through preconditioners.

Thank you.


