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Welcome. So, we will looking into Preconditioning Techniques and we have discussed

about  left  right  and  split  preconditioning  and  this  session  we  look  into  how

preconditioning  techniques  can  be  applied  over  conjugate  gradient  method  or  how

conjugate gradient method can be modified if we are using a pre conditioner.

The  first  example  of  preconditioned  application  of  the  conditioner  we  considered;

considering  to  be  conjugate  gradient  method,  because  conjugate  gradient  is  only

applicable for symmetric positive definite matrices. And therefore, we have to see that

whether we can choose proper pre conditioner so, that symmetric positive definiteness is

being maintained, and then how the resultant application comes out to be.

Pre conditioners can also be used over other solve solution techniques; however, because

the fact that Krylov space based solvers are faster solvers. So, we will only discussing

preconditioner over Krylov subspace based solvers, because these are they are already

faster solvers and we need to make them more fast. For steepest descent or for Gauss

Seidel we are not discussing preconditioning techniques because instead of doing that

rather we will use Krylov space based solvers to get faster solvers solutions. But when

Krylov space based solvers are restricted due to the poor conditioning number of the

matrix we should think of using preconditioner so that we can get faster solution on top

of that so, that we are not limited by the nature of the matrix; well.
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So, we will discuss two cases left preconditioning which is M inverse Ax is equal to M

inverse  b  choosing  symmetric  positive  definite  M  so,  that  the  this  matrix  remains

symmetric sorry sorry. So, that this matrix M inverse A this matrix remain symmetric

positive definite. And conjugate gradient is only applicable when A is also a symmetric

positive definite matrix.

So, if  M is  symmetric  positive definite,  M inverse A will  remain symmetric  positive

definite and L inverse a L in L inverse AL inverse transpose will also be a systematic

positive  definite  matrix.  So,  conjugate  gradient  will  be  applicable  here  both  these

equations can be solved using conjugate gradient. Now, we will see how what is the

implementation of that.
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So,  original  conjugate  gradient  method without  any preconditioning  it  started.  So,  it

starts with a guess x 0 and computes the initial residual r 0 is equal to A x naught minus b

and sets p naught is equal to r naught and then obtain alpha and update x and r alpha is

obtained using the a conjugate c of p vectors and orthogonalization of r vectors which is

r j transpose rj by Ap j r j transpose Ap j is alpha j similarly, we obtain another parameter

beta j based on which p will be updated.

So, obtained alpha you and update x and r. So, one alpha is obtained x and r is updated,

and now use the updated r to obtain beta and once beta is obtained, update the auxiliary

vector p and then iterate for converges; that means, do these steps again and again till

you get a converge solution where the residual is a very small value; the mod of the L

two norm of this vector is a very small r L two norm of r is very small.

So, now we will see how, if we consider a preconditioned system, how these equations

will be modified One idea can be that you explicitly compute an M inverse multiply that

with a, get M inverse a multiply that with get M inverse b and solve it. But explicitly

computing M inverse might be of problem at different stages because we are thinking of

inverting  a matrix  or we are thinking of getting  LU transformation of one particular

matrix and then getting inversion and then doing a matrix multiplication.

So, this might be of more complication rather we will start with a matrix which is a form

M inverse A, and we will assume that through some method we are getting the M inverse



a from how we will discuss it later. And then we apply conjugate gradient method over

that  M  inverse  a  matrix.  However,  we  will  keep  in  mind  that  our  original  Krylov

subspaces based on r 0 a r 0 s square r 0 etcetera. So, while calculating r we use the

property that r j plus 1 r j minus a alpha j Ap j is orthogonal to r.
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So, left preconditioning of conjugate gradient, will try to obtain steps for M inverse Ax is

equal to M inverse A with M being symmetric positive definite, LL transpose. If M is LL

transpose M inverse A is also symmetric therefore, conjugate gradient can be obtained.

We start with an initial guess x 0; z 0 is a new residual which is M inverse b minus M

inverse A x 0 because the new equation system is M inverse A x minus M inverse b the

new residual is M inverse Ax 0 subtracted from M inverse b it is the new residual.

The original residual equation has residual r naught is equal to b minus Ax naught. The

relation between the original residual and the new residual can be obtained as z naught is

equal to M inverse r naught. So, now the if we are thinking of solving this equation,we

have to go with a new residual which is z naught z or z naught.
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The precondition matrix equation is M inverse Ax is equal to M inverse b, the residual of

the above equation can be updated as very similarly M inverse A is a coefficient matrix

now. So, if we can remember our older update was r j plus 1 is equal to alpha j is equal to

r j sorry r j plus 1 is equal to r j plus alpha j Ap j, that is our older update for Ax is equal

to b equation.

Now, we have an equation M inverse Ax is equal to M inverse b, and the residual is z.

So, z can be updated it is a very similarly as z j plus alpha j M inverse Ap j. Now, r j and

r was orthogonal as we are discussing M inverse when we discussing a matrix,  now

when we will discuss a M inverse a matrix the new residual z j plus 1 and z j will be M

orthogonal; that means, z j plus 1 z j transpose M z j plus 1 is equal to 0. So, dot product

of z j with M z plus j plus 1 is equal to 0.

That gives the parameter alpha as alpha j is z j transpose M z j divided by if we substitute

this here, if you substitute the z j plus 1 here we get an alpha j. So, we will substitute this

as z j plus 1 and we will get an equation through which we can get alpha j is z j transpose

M z j by M inverse Ap j transpose M z j. So, this is M product M dot product of z j z j z j

transpose M z j and this will be M dot product of M inverse A p j and z j. So, we will see

how to simplify these products.
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Further the auxiliary vector p can be updated this auxiliary vector is now, not auxiliary

vector of x is equal to b rather auxiliary vector of M inverse Ax is equal to M inverse b.

So, the update will have a relation with the new residual z earlier for Ax is equal to b. So,

this is for M inverse x A x is equal to M inverse b this is for this equation. For Ax is

equal to b the relation was something like r P j plus 1 is equal to rj plus 1 plus beta j p j.

So, for the M inverse Ax system this will be p j plus 1 is equal to z j plus 1 plus beta j pj

M inverse. This is the relation for Ax is equal to b conjugate gradient therefore,  this

should be similarly we can find out the relation for p update of the auxiliary vector in

conjugate gradient applied over M inverse A x is equal to M inverse M or p j is equal to z

j plus beta j p j minus 1.
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So, what we have already obtain the dot product between p j and z j now we will see how

can we modify this. So, you got a relationship p j is equal to z j plus p j minus 1.

So, this the given dot product which is M inverse Ap j z j M is equal to M inverse A p j

transpose M into z j which will be the z the term z j will be p j minus beta p j minus 1

and this is written from here. So, when we will do this we will have A p j transpose M

inverse  transpose  and  M  inverse  transpose  is  same  as  M  inverse  because  M  is  a

symmetric matrix. So, we will have a minus and that other part will be beta j M inverse p

j transpose Mp j.

Now, if we. So, we break it down basically M inverse A p j Mp j transpose Mp j minus

beta j which is a constant amount of it scalar and come out of it M inverse A p j transpose

M inverse p j. And then we can write M inverse say B M inverse B transpose is equal to

B transpose M inverse transpose and as M is a symmetric matrix.  So, this will be B

transpose M inverse.

So, this will be A p j transpose M inverse Mp j M inverse M will be pr identity matrix

similarly this is A p j transpose M inverse M p j and p j and p j p j transpose A p j minus

1 will be a 0 vector because p is an a conjugate matrix p is a conjugate. So, we will see

that this term will become 0 you can work it out this is just one step and this will be M

inverse A p j transpose M p j or M inverse A p j p j of M as M is symmetric or M is LL

transpose. 
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Further what we are discussing M inverse Ap j p j, M is M inverse A p j transpose m j

which is  Mp j  transpose because we can change the order for in  the dot  product M

inverse  p  j  p  j  transpose  M transpose  M  inverse  A p  j,  and  as  M transpose  M  is

symmetric. So, M transpose is equal to M. So, this will be an identity matrix and we will

get p j transpose A p j or Ap j dot p j.

So,  the denominator  of  the alpha calculation  is  simplified  to  Ap j  transpose p j  and

remember this is the denominator what we obtained in conjugate gradient method also.

However, the k v it is that an p j is calculated differently in this method. Because this is

pj is an auxiliary vector of M inverse Ax is equal to M inverse b not for Ax is equal to b.
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Now also z is equal to M inverse b minus M inverse Ax is equal to M inverse r. So, the

M dot product of z j z j which is z j transpose Mz j can be written as z j transpose r r j or

zj dot rj. So, my new alpha j which was equal to what was the initial form of alpha j we

will again just once check.
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The alpha j was, z j z j M by M inverse Ap j z j and this is now transferred to z j dot r j

and this is transfer to P j dot A p j. This will be the new values the final form of alpha,

which is a conjugate gradient solver algorithm will need to compute.
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So, the left precondition conjugate gradient steps will be start with x 0, which will give z

0 is equal to guess x naught, which will give the new residuals z naught is equal to M

inverse Ax naught minus M inverse b set p naught is equal to z naught and r r naught is

equal to M inverse z naught.

Obtain alpha and then update x and r and then z. So, if we can update r you can update z

or the same and obtain beta using the updated r. So, then the alpha is equal to r z z j by

Ap j r j and you will obtain x j plus 1 is equal to x j plus alpha j p j. So, this also gives a

direct way to update x instead of looking into z because x is (Refer Time: 16:11) x is the

solution vector x is the solution vector. So, x will follow exactly same relation as it was

following in the conjugate gradient method of x is equal to b. It will follow the same

relation in the conjugate gradient method of M inverse Ax is equal to b because x remain

same in the both in both the cases.

And  rj plus 1. So, x j plus 1 is equal to x j plus alpha j p j similarly r j can be obtained as

r j minus alpha j Ap j just substitute this into x is equal to b. X is equal to b equation is

still holding and z j plus 1 is M inverse r j plus 1. So, again it becomes important here to

compute M inverse; M inverse should be readily available with us, instead of actually

looking into a LU factorization of a matrix and getting the lower transfer lower triangular

form multiplying into upper triangular and inverse etcetera M inverse should be readily

available that we need to check.



Later I will say that M how M is evaluated I will come into it later, which is also a very

important part of this methods, but we will see that how them algorithms are modified

provided we know to evaluate M and we are ready with M inverse or M inverse a in

certain cases.

So, once z is updated you can update beta is j plus 1 z j plus 1, z j plus once in dot

product by z j z j M dot product. So, earlier there are beta was dot product of the vectors

now they are M products. And once beta is updated update p as p is equal to r rj plus 1

plus beta j p j p z j sorry it is not r now z, z p j plus 1 is z j plus 1 beta j p j. And then you

can carry this p and r and z to get the new alpha new beta and continue on the iteration

loop exactly the same way what you have down in conjugate gradient method, iterate for

convergence.

The conjugated ends will probably once look into the methods the conjugate gradient

algorithm. Now can be formed using all these steps; starting with these steps start with

these guess use all these steps and then do the iterations.
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Which is compute r 0 is equal to b minus Ax 0 z 0 is M inverse r 0 p 0 is equal to z 0 for

different iteration levels first compute alpha r j dot z j by Ap j dot p j. You know now in

this calculation at least no M product is needed M is not needed here M was once needed

at M inverse from here, but here M is not needed then x j plus 1 is equal to x j plus alpha

j p j r j plus 1 is equal to r j minus alpha j Ap j z j plus 1. So, this and this if this holds



because this is the exactor remains essentially same, this should hold then by b minus x

we can get this relation this one once r is obtain z is equal to M inverse r.
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So, we should know this that r is equal to b minus A x z is equal to M inverse b minus M

inverse Ax which is the precondition system sorry M inverse r. 

So, then we get z is equal to M inverse r plus 1, beta is equal to r plus 1 z j plus 1 by r j z

j which is earlier we have seen that beta is equal to z j plus 1 z j plus 1 M by z j z j M.

Now, z transpose z transpose M transpose z sorry. So, what is z j plus 1?
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Z j plus 1 M this will be z j plus 1 transpose M z j plus 1 (Refer Time: 20:44) some way

redo it we are trying to evaluate the beta which will be equal to same in a while we can

check that that z j z j M, this product is equal to z j transpose M z j. And M z is equal to r.

So, z j transpose r or z j  rj z j dot r j.

So, this will be z j plus 1 dot r j plus 1 by z j dot r j this product will be this. So, we will

get this particular beta evaluation from here. Z j plus 1 m z j plus 1 will be nothing, but

dot product between z j plus 1 and r j plus 1 and if we write it for better clarity. 
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And this will be z j plus 1 dot r j plus 1 because z j z j in product is z j dot r and divided

by z j dot r j, which is calculated here and we will get p j plus 1 is equal to z j plus 1 plus

beta j p j the same way it should be (Refer Time: 22:58).

So, we get a; what we see that symmetricity of the matrixes preserved, that is how the M

is chosen. So, that M inverse a is symmetric. And the solution is essentially very similar

with the older conjugate gradient method; however, a new matrix inversion is added.

This is a new matrix inversion which is added that i have to calculate M inverse and that

is what we are telling that M this will be of further deliberation at the later stages that

how M inverse should be obtained. So, that these steps do not add any extra overwrite

here.
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We go to the split precondition conjugate gradient which is L inverse a L in L inverse

transpose u is equal to L inverse b, and this also needs solution of the equation that x is

equal to L inverse transpose b. And, so you get the following vectors and matrices p hat

is  equal  to  L transpose  p  u  is  equal  to  L transpose  x sorry  x  is  equal  to  L inverse

transpose u.

So, that will give me u is equal to L transpose x u is equal to L transpose x r hat is equal

to L transpose j z j, which is L inverse rj because L yeah this will see later this comes

from the previous discussion. So, r till hat is equal to L j z j; z j is the new vector and this

is  L  inverse  r  j.  And  A hat  is  equal  to  L  inverse  AL  inverse  transpose.  And  the

preconditioned equation system is A tilde u is equal to L inverse b. So, this becomes this

equation system this becomes A hat; A hat u is equal to L inverse b.
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Now, conjugate gradient method similar to the left preconditioned conjugate gradient can

be developed. And this method there is the following relationships can be utilized which

we have already seen with an older vector z j is equal to M inverse r j and p j is equal to z

j plus 1 beta j p j by the new residual and auxiliary variables in the precondition systems.

So, similarly we will get r j dot z j is equal to r hat j dot r hat j and A p j dot p j is equal to

a hat p hat j dot p hat j. 

(Refer Slide Time: 26:25)



So, the method this is the derivation of the method is very similar to the left precondition

method. Only thing we have a new equation L inverse transpose we are doing it in terms

of you A hat u is equal to L inverse transpose b, and u is equal to L transpose u then

equation system. So, we compute the initial residual r naught get L inverse transpose r

naught is r naught hat obtain p naught is equal to L inverse transpose r naught.

And instead of directly write p p naught is equal to z naught this is the new form of p

naught, then we obtained alpha we obtained update x update r based on x update. So, you

can write b minus Ax is equal to 0 and get r from x and then update beta and get the p

and do the iterations.

Then lift left precondition CG supposed to solve A tilde u is equal to L inverse b and then

for  find  L transpose  x  is  equal  to  u;  however,  in  the  present  algorithm we  are  not

explicitly evaluating u rather it is modified to solve Ax is equal to b. So, it is taken care

of that both these sets of equations are solved together, by the way we are defining r tilde

and p and then using this p to evaluate update x both this equation systems are taken care

of.

So,  we  are  not  solving  it  separately;  however,  something  like  L  inverse  transpose

solution is required when we are finding out p and L inverse A this product is required

when we are finding out r tilde. So, we are saying that any of the condition precondition

system is adding some sort of overwrite in terms of solving a new equation system. So,

this equation system the L inverse transpose or L inverse a this equation systems should

be very; we will have should have much less complexity to solve you should have some

way readily available solution in n steps, we should not encounter in cube number of

steps some method we in which we can get n steps.
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All variants of precondition CG preserve the symmetry of the precondition matrix all

variants  gave  same iterates.  So,  we  look  in  to  split  preconditioning  we look in  left

preconditioning even if we think of right preconditioning, the iterate should be same that

is starting with the values x 0 the updated value of x at each iteration level must be same.

Although it is claimed that condition number of the precondition matrix in improve, the

preconditioning increases new method introduces new equations like r tilde is equal to r

theta L inverse A p j or z is equal to M inverse r j. So, the inverses are less complex; this

inverse is less complex if LU decomposition is of M is already available, then the finding

this inverse will be straightforward.
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So, next session so, we have to see that how LU inverse of M is available, but before

doing that  in  the  next  session we will  look into  how preconditioning of  GMRES is

obtained.

One group is for symmetric matrices we have looked into conjugate gradient method

now for general matrices non symmetric matrices we will look into the GMRES method

and how preconditioned algorithm for GMRES is available. And then we will see which

is  extremely  important  that  how  the  inverse  of  the  M  matrix  or  how  the  actual

precondition matrix and its application over the solution vectors can be are obtained so,

that the computational complexities due to the preconditioning itself is not high, that add

adds extra overwrite on the solution this methodology. So, we will also look into that in

the next class.

Thank you.


