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Welcome, we will start our discussion on Preconditioning techniques. So, till now we

have looked into different matrix solvers; we started with the basic matrix solvers like

Jacobi  Gauss  Seidel.  And,  then  we looked  into  projection  based matrix  solvers,  say

steepest descent, minimum residual residue norm. Then we discussed about Krylov space

based solvers, which is full orthogonal method GMRES conjugate gradient which are

faster methods than the previous methods we have discussed.

And we have seen that  conjugate  gradient  is  a  very first  method;  however, it  has  a

limitation  for  symmetric  positive  definite  matrices.  So,  we  looked  into  bi

orthogonalization methods in which we looked into development of bi conjugate gradient

method, which is a conjugate gradient like method, but applicable to a different wider

class  of  matrices.  Then  we  also  looked  up  into  block  relaxation  methods  and

parallelization strategy.

So;  however,  as  we have looked into a  class  of  methods,  what  we found that  these

methods has certain restrictions in terms of their applicability like the Jacobi or Gauss

Seidel is applicable only to diagonally dominant matrices conjugate gradient or steepest

descent is applicable only to symmetric positive definite matrices. Although GMRES or

bi conjugate gradient can be applied on much wider range of matrices at least the matrix

has to be non singular then they can solve it.

However the issue is that they are iterative methods and therefore, their solution needs to

the solution vector needs to be iterated over a number of steps, and the number of steps

are usually of the order of the size of the number of rows of the matrix. And after these

iterations only it will converge in some cases the number of iterations are much more

than the size of the matrix also.

So, the number of iterations is a binding parameter or a restrictive parameter when we

are looking into an iterative solver whatever  iterative solver  we design through very



refined linear algebra if we can define a very good iterative solver, still  this iterative

solver will take a number of steps to converge. And, this number of steps or the rate of

convergence of an iterative solver, which is the rate at which the residual reduces to 0 or

the difference between the last updated solution and new updated solution reduce.

This rate is a function of some of the matrix properties; say think of a Jacobi or Gauss

Seidel type of solver. The rate of convergence is a function of the spectral radius of the

iteration matrix. If I look into conjugate gradient matrix, it is some way of function of the

condition number or spectral root over of condition number the rate of convergence is

function on that.

So, if we can change the matrix we have better solution, but for some matrices especially

long back we discussed about condition number the matrices which are ill condition; that

means, the singular values one singular value is very large and another singular value is

very small. In these type of matrices the number of steps will be very high because the

convergence rate is low.

So, what should we do there? One idea is to we will employ a lot of steps to solve it, but

remember as the matrix is larger in size in each step lot of mathematical operations are

done. So, if the number of iteration steps are very high the total number of mathematical

operations are also very high.

So, that is a why the question comes that how we can reduce the number of iteration

steps in a sense, how we can reduce the number of mathematical operations and can have

a faster solver. We should consider the fact that the quest for looking into different matrix

solvers, starting from the age old Gauss elimination method to what we are discussing

like by conjugate gradient or GMRES type of solver, the quest for developing different

matrix solvers came simply due to the fact that we want to have faster convergence.

And in reality we are say you are doing a weather simulation where you have a very

large matrix and you have to get very fast result to predict path of a hurricane, and you

really cannot afford the number of computations to be so, high that it takes lot of time

and the solution is not available when it was required to sub certain purpose. So, you

need to look for faster solver; and this precondition technique is in a way we will see that

how we can do some alteration with the matrix properties. So, the convergence can be

obtained in a faster manner.
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So,  what  we are  discussing  is  that  the  rate  of  convergence  of  the  iterative  methods

depend on the properties of the coefficient of matrix, A. So, if you are solving Ax is

equal to b, the matrix A determines what should be the rate of convergence. Because

whatever theorem we read about convergence, the theorem says that it the method should

converge for any initial guess x 0 only what will be the rate of convergence, that depends

on certain properties of the coefficient matrix A.

For example convergence rate of basic iterative methods like Gauss Seidel, Jacobi or

successive  over  relaxation  depends  on  spectral  radius  or  the  modulus  of  largest

eigenvalue of iteration matrix G. If the spectral radius is close to 1, the convergence is

fast if the spectral radius is large if is very if the spectral radius must be less than 1; I am

sorry  if  the  spectral  radius  is  much  smaller  than  1,  the  convergence  is  faster  if  the

spectral radius is close to 1 the convergence is slower or it will take more time. And how

G is determined? We have different methods like for Jacobi there is one way to obtain G

for Gauss Seidel there is another way to obtain G for SOR there is another form of G.

However if we using one particular method, for one particular matrix G is fixed so, we

are kind of tied with the eigenvalues of G and the rate of convergence of this method.

Convergence  of  steepest  descent  method  depends  on  the  spectral  condition  number

which is the radius of magnitude of maximum eigenvalue by minimum eigenvalue of A.



And as this particular value this spectral condition number is close to 1 the convergence

is better if the number is larger the convergence is poor.

Convergence of GMRES depends on the condition number of A which is that ratio of the

singular values of A and or mode A by mode A inverse and convergence of conjugate

gradients depends on square root of condition number of A. So, as smaller is this value

the  condition  number  is  always the number  is  the  ratio  of  largest  eigenvalue  largest

singular value by smallest singular value. So, it is always greater than 1.

Now, once we have a square root of this value, this number is smaller as smaller as this

number the convergence is faster that is a conjugate gradient is usually a very fast solver

because a because it depends on square root of the condition number of A. However, the

property is related to this matrix A like this or again condition number here A spectral

radius of G, all these properties are related to the property to the nature of A. And, for

certain matrix which has poor conditioning or ill conditioned matrix the convergence rate

might may be very small.

But in reality we might encounter lot of matrices which has ill condition poor condition

number. So, what should we do for them the like say the quest is to get faster solver. So,

you should not be restricted by the fact that the condition number if A is bad. So, you

will take a lot of time which will we will see the methods by which we can still improve

the convergence properties.

So, one thing which you are not going to do any further in this course, not to look into

new solver methods rather we will use the solvers we have discussed already and see that

how certain  other  techniques  which  is  one  of  this  is  preconditioning  which  we  are

discussing, can be applied over this solvers to get better convergence.
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The basic idea of preconditioning is that that the convergence of Ax is equal to b by any

iterative method depends on properties of A like condition number. And preconditioning

means, precondition a multiply something with A and something with b, something with

the left hand side of the equation and something with the right hand side of the equation.

So, that the new matrix say pa has a better condition number and you can solve it better.

So, if we can solve an equation which is sorry which is PAx is equal to instead of this is

PAx is equal to P b instead of solving Ax is equal to b, where PA has better properties we

will have faster convergence. And we can see that x will remain same instead of x is

equal to b if we solve PAx is equal to b the solution x will remain same. Only advantage

will be that PA will probably have a smaller condition number or the iteration matrix will

have a larger spectrum smaller spectral smaller spectral radius so, that the methods are

faster. 

So, you can have a faster convergence if instead of PAx we can solve P b. So, we have to

very carefully find a p. So, that when p is multiplied with a gives a matrix which has

better properties. So, the convergence rate increases. Because the convergence rate is

anyway function of the properties of the solution matrix or the coefficient matrix. In that

case this P is called a preconditioner or preconditioning matrix, P which is multiplied

with A before we go for solution of Ax is equal to b, actually improves the conditioning

of the coefficient matrix and we call it to be a preconditioner or preconditioning matrix.



Usually a preconditioner matrix is defined by denoted by M inverse inverse of some

matrix  which  you have  to  find  out.  And the  preconditioned  equation  is  given as  M

inverse Ax is equal to M inverse b. So, Minverse which is the preconditioner multiplied

in the left of the. So, coefficient matrix a gives a new equation system M inverse Ax is

equal to M inverse b. And our presumption is that this matrix M inverse a has better

condition number or rather smaller condition number so, that the equation M inverse Ax

is equal to M inverse b can show faster convergence when you look into a iterative

method for solution.

So, therefore, the goal moves that will we have to see that how multiplying a inverse

with the matrix with a matrix change our equation system. Do we need to find out how

should we find out an M inverse, which increases the condition number there is a first

question. While increasing the condition number the few properties of the matrix like if

the matrix is symmetric, M inverse a must be symmetric otherwise we cannot use it for

conjugate gradient method.

So, these properties has to be preserved some of the properties of the matrix has to be

preserved, and we need to see how M inverse can be found out whether we need to

explicitly find M and find its inverse which will finding inverse of a matrix is again a

very  very complicated  job,  because  the  numerical  operations  are  same as  the  Gauss

Jordan method order of n cube.  So, do we need to explicitly  find out inverse of the

matrix; what are the techniques for that and how smartly we can apply this idea that we

will find out an M inverse will multiply it with the equation M Ax is equal to b and M

inverse a will have a better conditioning number will get faster solution how smartly this

can be imposed that we have to we can do.
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So,  there  is  there  is  the  original  equation  which  is  Ax is  equal  to  b,  we call  it  left

preconditioning if f M inverse is multiplied on the left of a. So, we get M inverse Ax is

equal to b. Essentially this preconditioning does not change the solution vector x x will

remain same if we solve it. There is another way which is called right preconditioning

where the precondition is applied right to the matrix and here we change the solution

vector. Instead of solving Ax is equal to b, I solve a M inverse u is equal to b where this

term M inverse u is now the actual solution vector x. So, I have to solve basically two

equations first is AM inverse u is equal to b and second is x is equal to M inverse u.

There is one difficulty in that that I have to again solve our matrix equation M inverse u.

So, the inverse of M should be readily available or it should be very simple matrix like

M should be something like a diagonal or a lower triangular matrix for which or an upper

triangular matrix you can solve it directly. So, that also you have to look into it if you are

using right preconditioner.

The issue in using right preconditioner is that, that the right hand side b remains same

instead of M inverse b; we are keeping the right hand side b. So, you are not doing

saving on matrix multiplication and also certain properties certain advantages we might

have when we multiply a M inverse on the right of a in some cases like M inverse a

might give a M inverse a might give a bad condition matrix, but M m inverse by give

better condition matrix. So, these things are possible in some cases.
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If  the now there is  a need of preserving symmetricity  which I  was discussing at  the

beginning. If the matrix is symmetric special algorithm for symmetric matrices can be

applied to solve it like conjugate gradient, like steepest descent which is only applicable

for symmetric matrix. Therefore if I am using a preconditioner, the precondition matrix

M inverse a or a M inverse must also be a symmetric one otherwise. So, I thought of

using conjugate gradient on a symmetric matrix I multiply do you through the M inverse,

M inverse A is no longer the symmetric matrix. So, you cannot use conjugate gradient

there.

So, in order to use the algorithm for symmetric matrix symmetricity has to be preserved;

a symmetric precondition right. So, because we are instead of A, A is symmetric and we

need  a  M inverse  A which  is  symmetric  that  shows that  M inverse  must  has  to  be

symmetric or M must have to be symmetric, if M is symmetric M inverse will also be.

So, we need to get a symmetric M matrix there and a symmetric preconditioner can be

obtained as M is equal to ML M R as a decomposition which is equal to LL T any

symmetric  matrix  any  symmetric  non-singular  matrix  is  decomposable  into  LL

transpose, L is a lower triangular matrix, L transpose is an upper triangular matrix this

LU decomposition.
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LU factorization  and also  we can see  that  if  any symmetric  matrix  can be obtained

through an LU decomposition where M is equal to LLT, LU factorization can also be

applied for preconditioning in and this is a very very useful technique of preconditioning

we will  look into the later  parts of this discussion that M can be obtained as an LU

decomposition or in as a LU factorized matrix.

And if it is a symmetric, then it will automatically an ma L transpose matrix this can be

obtained through incomplete  Cholesky like factorization or using first  few steps of a

Gauss  elimination  method  where,  a  gauss  elimination  can  be  used  to  get  an  LU

decomposition  of  that.  So,  something  like  a  Gauss  elimination  or  two  or  Cholesky

factorization can be used to get an LU form of M. 

However we call it in complete LU factorization because complete LU factorization of a

matrix takes n cube number of steps. So, you really you do not go for this n cube number

of steps, rather we run the steps for certain number of points we get a LU factor which is

which is equal to M m is always equal to mu, but M is not equal to a inverse there is

some benefit if M m is sorry M is not is equal to a there is some benefit if M is equal to

a, but it is not that we will come into it. Because we are solving I will I will probably

emphasize it here, we are solving M inverse A x is equal to M inverse b the best solution

could have been obtained if this is very close to identity. So, if M is equal to LU of A

then this equation is solved in a step we do not even need any iterative method.



However getting LU decomposition of a is a costly step. So, you do not do it in practice

we run it up to few steps and then stop it, but this part I will again elaborate when we

will  we  will  come  to  the  relevant  discussions;  what  we  can  say  that  a  symmetric

preconditioner can be obtained as M is equal to LL transpose, and it is a general practice

to use an LU matrix M is equal to LU as a preconditioner.
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There is another thing called as split preconditioner because we have seen that M is equal

to  LU is  the  general  practice  of  using  preconditioner,  you just  discuss  this,  but  the

rationale I will discuss later, but M is equal to LU is a general form of preconditioner let

us recall that and so, M is all already we formed M in a split way there is one factor L

another factor R. Another idea is that a split split preconditioner when M is equal to M L

and M R and ML and M R both are triangular matrix and ML is multiplied left of the

coefficient  matrix  a M R is  multiplied right of the coefficient  matrix a.  So, the split

condition equation system looks ML inverse A MR inverse u is equal to ml inverse b

where x is equal to M R inverse u.

So, this has the right preconditioning part, which gives an auxiliary equation x is equal to

M inverse u, and also the left preconditioning part which multiplies L inverse L b; what

is the advantage? Advantage is that if we can well design ML and M r we can very well

preserve the symmetricity of a matrix that is the high best advantage of this.



A symmetry preserving split preconditioner can be obtained as a LL transpose. So, the

equation will be L inverse same L transpose inverse u is equal to L inverse b. So, Ax is

equal to b can be written as L inverse AL inverse transpose u is equal to L inverse b. So,

all these exercises where you rather writing the equations in little more complicated way

by multiplying pre multiplying post multiplying matrix inverses with it has one particular

focus and this focus is nothing, but improving condition number of the solution matrix

and that we have to investigate in later stages.

But what we will right now see is that, if we can express equations in this form what will

be the resulting algorithms say we are trying to use GMRES over x instead of x is equal

to b I am trying to use GMRES over this particular equation system what will be the

resulting algorithm. And we also have to take care of that fact that L L inverse transpose

has to be designed in such a way that this equation should not bring a new overwrite over

the solution the total cost should not increase should reduce.

So, we have to also see how well inverse transpose can be reduced, but if L is typically a

triangular  matrix  L is  a  lower triangular  matrix.  So,  this  is  the inversion of a  lower

triangular matrix, which is which actually takes n steps and can be obtained very fast. If

A is symmetric positive definite then, L inverse L inverse transpose is also symmetric

positive definite.
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So,  now, will  look  into  preconditioning  of  conjugate  gradient  method  and  we  will

examine two cases; one is the left preconditioning where we will try to see M inverse Ax

is equal to M inverse b with symmetric positive definite matrix a. And, another is split

point preconditioning where we will see L inverse L A L inverse transpose u is equal to L

inverse b. The in the left preconditioning we have to choose M very carefully so, that M

inverse A remains a symmetric positive definite matrix, and that requires that M also

must be symmetric positive definite matrix.

In  the  right  preconditioning  the,  this  matrix  is  always  symmetric  positive  definite

because  if  a  is  symmetric  positive  definite  this  lower  triangular  matrix  inverse  and

transpose will give A symmetric positive definite matrix. So, you do not need worry, but

we also have to solve x is equal to L inverse transpose u for this.

So, in the next session, we will look into the algorithms through which we can solve this

type of equations.  We look into conjugate,  how conjugate gradient  algorithm will  be

modified so, that we can solve a preconditioned equation both left preconditioning and

split preconditioning and what are the relations between them.

Thank you.


