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Welcome. We have discussed about block relaxation scheme in last few lectures. What

we have observed that a big matrix  equation can be decomposed into smaller matrix

equations and they can be solved with some coupling in between them. And we got an

idea that probably the small matrix is coming out of the big matrix can be distributed in

to different computers and a parallel processing can be accomplished. We will discuss

about Domain Decomposition Scheme and Parallel Computing in this particular session.

The issues that this is as it is shows parallel computing, it has a computing part, it has a

computer science aspect also which is related with efficient design of the hardwares,

connecting  different  computers  and  using  an  interconnection  t  v  d  switch  and  data

transfer  across  different  computers.  That  also  involve  looking  into  several  parallel

computing  models,  which  is  a  programming  paradigms,  architectures  and  different

message passing interfaces.

However as we are more interested in the matrix  solution part  in parallel  computing

exercise, will focus more on matrix computing of course, will use the least amount of

computer  science  aspect  that  we  need  to  know  in  this  discussion.  If  somebody  is

interested in parallel computing, he has to take separately dedicated courses and lecture

sessions and parallel computing.

I will give you some information about parallel computing, computer science aspects on

that but will more focus on the on how this infrastructures are actually exploited when

we do a parallel computing of matrix solvers and what are the issues then the matrix

solvers has to take care of when doing this.  So,  the method we will  use for parallel

computing because, parallel computing can be done for anything. When you have your

credit card and the bank processes the data of your expenditure, it does some parallel

computing. Or when your insurance claims are processed like all the insurance claims

that  went  to  a  hospital  are  processed  by  some  server  it  is  taking  care  of  parallel

computing.



So, parallel computing can have plethora of applications. We are particularly focused on

matrix solutions and using a method called domain decomposition method. There are

other data decomposition methods, data parallelization method, so matrix solvers which

we are not discussing here. 

(Refer Slide Time: 03:15)

So, what is the basic idea of domain decomposition? Partitioning the domain into smaller

blocks and solve smaller matrices in different computers in parallel. I have a geometry I

assume it to be a large geometry where, I have to solve nabla square T is equal to 0,

Laplacian of T is equal to 0 given all the register boundary condition. I will distribute

this  domain  into  smaller  subdomains  and  give  each  of  this  subdomain  to  different

computers. And then in each domain I will write the, I will try to solve the equation;

however, the solution has to be continuous throughout the domain, so it cannot be, it

solution cannot be independent from other. So, I have to dynamically exchange boundary

data  through  the  boundaries  among  different  domains,  over  the  partition  of  the

boundaries. 

So, the advantage is that when I distribute the domains to different computers, the overall

matrix size particular pertinent to 1 particular computer is much smaller than the net

matrix size. Also solving each domain independently and parallely in different computer

can increase the speed. So, we can decrease the effective matrix size or also you can

increase the speed, which are good in terms of the code performance as well  as the



capacity of our computing resource. We can now try a really large matrix to be solved

which we cannot probably solve in our on PC with a single processor. 
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And this is done by several ways, one is grid blocks. So, if we have a domain over which

you have to do some matrix solutions, we divided into several blocks. Now the idea of

block partitioning of a matrix will come that each block is solved independently. So, it is

a block matrix equation which has to be solved over the entire domain and within each

block, we will do some we will do the block relaxation scheme, will solve the equation

within each block.

This can be very complex or much complex geometric if we the physical geometry is

very complex we can generate multiple blocks within it. If say there is a part which is

rotating a turbine blades which are rotating in a domain, we can use different blocks for

this parts and the matrix equations will be different for this. This is as this is rotating the

momentum equation will come in rotating reference frame with coriolis forces etcetera;

however,  the  momentum equations  will  be  will  be fixed  cartesian  in  fixed  cartesian

frame here.

So, different equations can be coupled in the same system. Geometry is divided into

different blocks, each block has regular structured mesh at least what we are looking into

in this case, complex geometry regeneration can be obtained. A mapping is required at



block boundaries; that means, zone 1 has boundary with zone 2 and zone 3 maybe this is

gamma 1 2 and this is gamma 1 3.

So, that I can map that, this particular boundary map zone connect zone 1 2 zone like

that. And we can have multiple reference frames, multiple physics at different blocks

etcetera can be handled using grid blocks. 

(Refer Slide Time: 06:45)

There  are  2  possibilities  in  domain  decomposition;  one  is  non  overlapping  domain

decomposition, the subdomain is intersect domains intersect only at on their interface.

So,  there  is  a  single  interface  between  the  subdomains.  And  overlapping  domain

decomposition; that means, one subdomain has certain overlap with the other subdomain,

they have 2 interfaces  actually, so these 2 are  also possible.  And in blocking of  the

solution making blocks of the solution vector, we have seen that overlapping and non

overlapping that blocks are also possible and that was done by that particular matrix w

we remember. 
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Why is parallelization? we discussed it earlier to reduce computational time by dividing

number of operations into large number of computers. Each computer will take care of

one subdomain and so,  large number of computers  can be associated  with the entire

matrix  problem and it  can be paralyzed in  a  sense then,  the speed will  increase the

number of iterations will be same, but each one is solving a small problem.

So, each computer will perform all the row calculations local to it in a much smaller time

because, number of rows pertain into each computer is smaller then we can increase the

speed, we in less physical time will get the solution. Also to reduce the matrix size to be

stored into single chunk of memory, instead of having a large matrix we will break down

into smaller matrices.  So, each computer in 1 particular RAM location it is storing a

small amount of the matrix memory. This both these are helpful for the performance of

the code.
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We will see what can be estimate of computational cost for a large scale problem so that,

I can assert that there is certain cases there is need of parallel computing with single

processor pc’s with standard RAM we cannot solve it. Think of our turbulent flow, the

grid spacing required for smallest turbulent scale is Reynolds number, Reynolds number

is a number which determines the physics of most of the simple flows we encounter flow

of fluid. So, Reynolds number to the power 3 by 4. If Reynolds number is 10 to the

power 6 for a 3 dimensional grid it needs 10 to the power 13 grids. For an unit box the

grid spacing is a Reynolds number to the power minus 3 by 4, so for an unit box it is

needs, in one direction it needs Reynolds number to the power 3 by 4 grids.

So, if the Reynolds number is 10 to the power 6 in considering 3 dimension it needs

around 10 to the power 13 grid points, you can do this calculation yourself.

In one time steps, if we have to consider what happened to the flow in our small time

delta T. We have to do a matrix solution that will need order of 10 to the power 13

floating point operations because, even with the first state solver the number of steps is

of the order of n, number of operation is order of n, so order of 10 to the power 13

floating point operations.  Typical physical duration of a time step is 10 to the power

minus 3 seconds. So, we can computing from one second, but we have which one time

step which is calculating for 10 to the power minus 3 seconds of the flow happening. 



So, in order  to simulate  for 10 seconds of flow what  will  happen to the flow in 10

seconds at Reynolds number 10 to the power 6 to resolve the small smallest scale of

turbulent motion will need 10 to the power 17 operation, 10 to the power 17 floating

point operations. The first test computer gives 10 giga floating point operations. 

So, estimated time will be 10 to the power 10 seconds or 317 years in order to solve flow

for 10 seconds in an unit 1 meter long domain 1 cubic meter of fluid has to what is its

turbulence level has to be estimated for 10 seconds. It will take in a computer with 10

giga flop per second speed it will take 317 years. So, what we will leave even nobody’s

student’s student’s student will be to look into this computing. 

So, we really cannot do this, if we have to simulate a large problem like that with a single

computer. So, we have to also the matrix size will be of the order of 10 to the power 13

floats, which is 10 to the power 13 into 16 bytes and it is much more than standard RAM

size.  So, forget about solving it  317 year say you write your will and ask your next

generation to look into the simulation so that, the results are coming whether finally, you

are  getting  some  matrix  solutions.  Forget  about  doing  that  you  cannot  start  the

calculation because, the matrix you cannot stored in a single computer, in a single RAM

is 10 to the power 13 into 16 bytes. So, you need to do something else.  

(Refer Slide Time: 12:09)

And we will look into parallel computing, parallel computing has 2 parts that one there is

a memory it stored somewhere and there are processing units which take cares of the



data given to it and follows the instructions. So, instructions are given to a processing

unit, it takes reads from the data on the memory stored and works accordingly. 

So, as per Flynn in 1966 give how data and instructions can be processed in parallel and

will follow 2 different architectures we usually follow in matrix computing; one is Single

Instruction  Multiple  Data  or  SIMD, another  is  Multiple  Instruction  Multiple  Data  or

MIMD. What  is  in  SIMD? There are  different  computers  essential  each computer  is

following, same set of instruction but they have different data. So, a large amount of data

can be processed by different computers but in instruction in each computer is same.

Then MIMD is that there are different instructions to different computers and there are

different data which is going to different computer and they are processing this data.

This is mostly used in may domain decomposition algorithms this model that. There are

number of computers, they are using different data and they are using they are doing

different  set  of  instructions  that  are  given  to  them.  However,  these  computers  are

connected to each other so that, they can communicate in between them. So, we will

have lot of computers which will do some activity followed by the instruction that I have

given with different part type of data.

So, different type of block matrices can be handled by different computers and they are

talking to each other there is a switch by which these computers are connected, and they

are sending some is, one computer is sending something to the main instruction pool

which is asking another computer to do something like that. All one computer is sharing

some data with other computer.
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The basic idea of parallel computing is that the load memory can be too heavy to carry

and the task will be, task might take astronomically long time that is what we have seen

this cases. So, we have a large piece of memory which has to be taken in a computer by

which  is  a  standard  serial  or  standalone  computing.  That  is  what  we  do,  we  have

discussed till now that there is a memory there is a computer and it will do. In parallel

computer it can be shared memory; that means, the memory is the same, you have a we

need a large memory.

We now, there are number of computers, each computer is accessing the entire memory

and it is accessing the memory elements, it is assigned to on that but they can see the

entire memory. So, data has not it is not important to transfer data from one computer to

other, each computer is working on the same memory this is called shared memory. The

difficult thing is that you need a very large piece of memory and memories are you large

RAMs are usually very expensive, much like 1 terabyte RAM is much more expensive

then I will say 100 of 1 gigabyte RAM 1000’s of 1 gigabyte RAM.

So, RAM this is much more expensive to get a large piece of memory. All in distributed

memory each one has a small memory, each computer has a small memory and they are

interconnected by a switch, which can take care of the memory which can take some of

its memory and send it here or some of the instruction to send it there. The smaller a

memory units are needed, but more communication because there is some overlap in



domain decomposition we have discussing and the overlapped data has to be exchanged,

so more communication is required.

The essential bottleneck parts of parallel computing is that, except doing computation,

computing for the matrix solvers for finding out the inverses etcetera doing Jacobi or

Krylov subspace operation etcetera, it has to spend some time for distributing doing a

domain decomposition and distributing different parts of the job to different processors.

We also synchronize in between the processor, so, in while performing the operations

then they have different processors as to communicate in between them. 

Tasks like synchronization and communication is done by functions called using libraries

called  MPI OpenMP etcetera.  There is  another very new development  here which is

using graphics card for doing matrix parallel computing. A graphics card is a occurred

with multiple very small processors with small memory, which can be connected with

the CPU of the main computer, it can be added as a card to the in the motherboard. And

small  amount  of  calculation,  so  using  small  amount  of  data  can  be  uploaded to  the

offloaded to the graphics card by the CPU.

And there can the interesting thing is that, 1 graphics card comes with 1000’s of small

processing units. So, we can have great infrastructure of paralyzing it, provided we break

it down to really small pieces of activity the great infrastructure of paralyzing the job.

However, we are not discussing about graphics card CUDA implementation, either we

are discussing about MPI OpenMP implementation here, trying to this is the mathematics

behind the row in decomposition and how can it lead to a parallel computation, parallel

matrix solver. 
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So, we have a L shaped domain which is distributed into several subdomains. Sigma is

the  main  domain  that  is  distributed  into  sigma  one  sigma  2  and  sigma  3  small

subdomains and gamma 1 3 and gamma 1 2 are the overlaps between them. Distribute

the domain into several subdomains form the matrix equation for each subdomain using

inter boundary domain values. That is that if I try to write down the difference equation

for a point here say, so these are the grid points here. So, for this particular i j, if I try to

write down the matrix equation, I need to use values here, here, here, here and here. 

So, I need to use the boundary value; however, this boundary is pertinent to another

subdomains. So, the values are not part of this particular subdomain or the processor

attached to this particular subdomain is also it is a task the updating this value is a task of

the processor associate to here. So, that is a complex issue which we will discuss now

actually. 

However, when we will form the matrix equation you have to form the matrix equation

assuming that these inter boundary domain value is known to you. You have to consider

this you cannot talking this. So, get the matrix equation for the inter subdomain including

the off diagonal value that is coming due to this particular elements. Now you proposed

an algorithm which can solve each domain independently. Solving independently each

domain is difficult because of this particular boundary.



This the value here belongs to this domain as well as it belongs to this domain and when

once we try to write an equation for a point here, we need a point from this particular

domain as well as we need are coming from that particular domain. So, you have to think

of we shall  go and a block relaxation scheme where we can write separate  some do

something special for this. 

Transfer the inter domain solutions to obtain continuity across the boundaries. So, once

you get some solution here, you get some solution here you have to transfer them across

the boundary so that, the solution is continuous across the boundary. It does not look like

150  to  50  degree  centigrade  temperature  here  and  100  to  and  250  to  300  degree

centigrade  temperature  here,  there  should  be  some  continuity  in  the  solution.  And

converge to a final  solution involving all  the subdomains.  So, you have to get some

solution, you will get some solution here, some here, some here and then you will iterate

with the boundary values etcetera and then finally, get a converse solution 

This is this is basically a block relaxation algorithm what we need here, but this block

relaxation  algorithm  has  to  be  distributed  over  different  computers  so  that  some

algorithm can be proposed where each domain can be solved independently. At least

some part of the solution can be carried out independently for each domain. 

(Refer Slide Time: 22:14)

So, we have the matrix equation. This is Laplacian of u is equal to f, this particular sign

is nothing, but nablus square, in the matrix, in the subdomain omega where, omega is



collection of all the small subdomains. With the boundary condition that on the gamma

on the boundary well  u is  defined and once we convert  this  particular  problem into

difference equation, this differential equation, this is the differential equation, when once

we convert into the difference equation you get a matrix equation. You have seen that

several times that, a Laplacian equation can be converted into a matrix equation. 

Let x is equal to sum of x i, be the solution at the domain internal points, so x so, x 1, x

2, x 3 at the domain internal point solutions, x is the solution and domain international

point. And y be the solution at inter domain boundary. So, we will consider x 1 sorry x 1

sorry x 1, x 2, x 3 at the solutions in inside the domain and y is these 2 net solution

vector, x is the solution vector in each domain, so sum of x is the solution in the domain

internal point and y are the solutions along the boundaries the inter domain boundaries.

So, now, we can write it as A u is equal to b where, A is the matrix which has block

diagonal, which is a block diagonal form and there is something apart from block, what

is that? That if I try to find out solution of for this x 1 It has some points, some neighbors

which is in this particular boundary similarly a point here we have some neighbor in this

particular boundary. 

So, when we will write the equations for this x there is something which will be connect

multiplied with the boundary inter domain boundary values. Similarly, if I try to write

equation for the inter domain boundaries there is something which is with x 1 some

neighbor x 1 some neighbor in x 2 some neighbor in x 3. So, it will have all the off

diagonal F 1, F 2, F 3 terms. So, once we write it as a block partition manner or the as a

block matrix equation, the blocks are B 1 B 2 B 3 and C for x 1, x 2, x 3 and y and the

inter block inter boundary connecting coefficient E 1, E 2, E 3, F 1, F 2, F 3 and we get a

right hand side whatever will come we get a matrix equation like this. 
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So, A u is equal to b can be converted as a matrix equation B 1, B 2, B 3, E 1, E 2, E 3, F

1, F 2, F 3, C x 1, x 2, x 3, y, f 1, f 2, f 3 g. Now my ideas question is that, how I can

solve it independently in each computers. If y is some way known to me this can be

distributed into the this is the decoupled problem, B 1, x 1 plus E 1 y is equal to f 1, B 2,

x 2 plus E 2 E 2 y is equal to f 2 something. So, if y is known this is a these are solved

problem, but y is not known y depends on x 1, x 2, x 3. So, unless I solved for solved it

in a coupled manner I cannot get a solution, let us see what will happen.

A x y is equal to f g which is this is B, this block we take it this B, this blocks we take as

A F E, this is as f and this is A C B E F C g F or B x plus E y is equal to F, F x plus C y is

equal to g. So, you get x is equal to B inverse f minus C y if just from this equation. And

now, we will substitute this x, so from this equation we get x is equal to B inverse f

minus E y. And now we will substitute this F x here, so you will get an equation for x

that F B inverse f minus E y plus C y is equal to f, C minus F B inverse E y is equal to g

minus F B inverse f. 

Now, if we can solve this equation, see this equation which we are used solving for y this

equation does not have any x component right that I can see here. This is a decoupled

equation for y only. If I can solve this equation, I will get y and once I get y, I can solve

all  the  x’s  independently  all  the  x  1,  x  2,  x  3  independently,  it  can  be  really  a

parallelizable equation. So, what is C minus F B inverse E, how can it be solved? 



 This is  called Schur component  yes,  this  is  an very important  parameter  in domain

decomposition  specially  considering  parallelization  of  a  domain  decomposition

algorithm. S y, so you have S y is equal to g F B inverse F or y is equal to S inverse g

minus FB inverse F. This S inverse has to exist and has to have nice properties so that,

even if we think of iterative schemes you can easily get S inverse. 

So, finally, the internal point solutions can be obtained as y is equal to x is equal to B

inverse F minus E y and with y obtained as S inverse g minus F B inverse f.

(Refer Slide Time: 28:27)

So, in a domain decomposition problems Schur component is defined as S is equal to C

FB inverse E. Solution at the internal problems of different subdomains are found as x is

equal to B inverse f minus C y y is equal to S inverse g minus FB inverse f. Once you

can write it like that, this part decoupled problems; that means, finding y does not need

any of the x interestingly what we can say. So, x has been eliminated here. So, if we can

solve it we can find y and then we can give y to different processors and try to solve x. If

s  inverse  exists,  y  can  be  found  and  hence  x  can  also  be  found.  So,  the  domain

decomposition method will stand if s inverse exists. That is that,  if this is done then

domain decomposition stands for any decomposition will stand if we can find an S which

is which is invertible 
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To solve x is equal to B inverse f minus E y and y is equal to S inverse g minus F B

inverse f there is a problem in the matrix form which you have to get now and we see

that whether this is parallelizable term. B is a block diagonal matrix, this part is B of A u

is equal to B. 

Inverse of B can be found in a decoupled sense as a disjoint point because, this is the

block diagonal matrix B inverse can be easily found out. Hence the sets of the equation

can a given can be solved provided y is made available to the particular process. This can

be solved independently in different processors provided y is also already known to the

processors. 
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And one method for that it Schwarz alternating procedure alternate between the domains

for solution, solve Dirichlet problem on one domain in each iteration,  solve Dirichlet

problem on one domain in each iteration and consider boundary conditions based on

most recent solution of other domains. So, essentially you start with some gauss value of

gamma,  consider  that  the  problem  in  one  domain  is  completely  Dirichlet  all  other

boundaries  are  known and that  inter  interconnected  boundaries  gauss  value  as  is  the

Dirichlet value, so solve it. And then you solve it for the other domains and again based

on the solution update gamma, by solving something like Schur component equation and

repeat it. 

So, the algorithm is choose an initial guess u until convergence in each domain solve

gamma u is nablus solve Laplacian u is equal to f with the boundary conditions in need

in the inter  block boundary, is  inter  domain boundaries and this  will  come from the

initially from the guess solution. First step it will come from the guess solution and later

update the u values of the boundaries and find repeat it till convergence.

But, we have to see whether this process converges actually because, this is not like our

direct solution method, not like standard block Jacobi iteration; you have to see whether

this convergence. And this is Laplacian of u grad u that delta u is Laplacian of u, the

algorithm sweeps through a subdomains and solves our original equation in each domain

based on the boundary condition that is updated from most recent values of u. 



So, when we are solving for each domain we are using a boundary condition which is

coming from our other domains and that is the most recent value of u available to the to

the processes.  We can start  with a global  initial  guess and update it  in each domain

during the iterations and then we have to check inter change that we have to send the

boundary condition from one domain to other to maintain continuity and updates.

(Refer Slide Time: 32:54)

 For overlapping domains, so this is an example of overlapping domain 1 has an overlap

up to so, this is still domain 1 is there, domain 1 has overlap in domain 3, some part in

domain 3. Similarly, domain 3 has some part in domain 1, this is an overlap, this is the

example  of  an  overlapping  domain.  For  overlapping  domain,  we can  use  something

Schwaz multiplicative procedure that solve in each domain solve A delta is equal to r r is

the residual compute x such that, x is updated with x plus delta x i in that particular

domain and also update y. Now the inter domain boundary, say the boundary of domain 1

is a member of domain 3, the boundary of domain one is a member of domain 3. 

So, how will it be updated, it will be updated by the solution, whatever we are getting as

the internal point solution of domain 3, that will go and update the boundary for domain

1.  So,  computed  the  solve  the  inter  domain  problems  independently  and  update  the

boundary values for the other domains. And then calculate the residual for each domain

use using the already known residual, residuals and the E vector, E is coming from the

boundaries again. So, update the residual in each domain. 
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The idea is if I ready to explain the steps that choose an initial guess u to the solutions.

Iterate till you get convergence for in each domain solve the Poisson Laplacian of u is

equal to f with the boundary condition which is coming from the other domains. Update

the values at the boundaries for the other domains. 

And till convergence you do it in all the subdomains till you reach a global convergence.

And when and this step can be done parallel in different computers because, gamma i j is

the  gauss  value  which  is  going into  different  computers.  Now, we have  to  see  that

whether, this step actually converges what is the convergence of this particular step. 
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And this the theorem of convergence for Schwarz procedure is given that, if the initial

guess u 0 is chosen such that the internal vector x 0 is as obtained from the solution of

the block per of the block relaxation of the matrix. Then the iterations are identical to

Gauss Seidel sweep of Schwarz Schur component and if Schur component exist they

must converge. 

(Refer Slide Time: 35:56)

So, domain decomposition should converge if we can choose the initial guess according

to the calculation of x based on the values y. So, if the initial guess is consistent with the



equation  system,  the  domain  decomposition  is  the  Gauss  Seidel  sweep  of  Schur

component and they must converge. 

The idea is divide the domain into number of subdomains, domain overlaps are allowed

such that, full row equation for each internal point of the subdomain is available. Start

with a global  guess.  Update solution at  each subdomain locally, considered the inter

domain boundaries as Dirchlet with the last updated solution value. And this is a parallel

step that updating each subdomain locally. Update the boundary values in 1 subdomain

as obtained as by the local solution of neighboring domains, this is the data transfer step,

so from one domain to other you have to transfer data. Iterate over the domain, still you

get a global convergence if to synchronize the residuals have to obtain residuals from

each domain and send it to one particular computer and it has to check over different

values of the residuals, what is the global value of residual whether, it has converse this

is the synchronization step. 

(Refer Slide Time: 37:09)

So,  the  elements  of  parallel  program,  when  we  have  distributed  the  geometry  in  to

different sub domains, initialization of parallel environment, allocation of decomposed

domain  to  the  processors,  which  needs  load  balancing,  idle  time  minimization,

calculation in each domain synchronization to reduce latency. Now we will see latent all

the  computers  will  do  almost  similar  amount  of  job,  now  we  will  say  it  idle.

Communication avoiding, there can be bottleneck in communication,  one is trying to



send another is also trying to send there can be a bottleneck, so avoid that, assembly of

results and termination.
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Overheads come due to initialization synchronization and communication. And this is

our in house code where number of solutions obtained per in per second. So, you got in 1

second how many matrix can be matrix solutions can be obtained for 1 particular large

matrix. 

And we have seen that as the number of processors are increasing up to 50, this is in the

number of solutions in one second is increasing speed of the computation is increasing

and that then it is going kind of flat because, communication where it has been increased

so much that, there is no increase in the performance or computational speed which is

number of iteration per second ideally as you increase the number of processor it should

follow up 45 degree slope, it will also increase. It increases, but it does not follow the 45

degree slope due to the overheads which is due to communication synchronization and

latency.  So,  try  to  explain  some  aspects  of  parallel  computing  using  domain

decomposition in this particular lecture.

Thank you. 


