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Welcome, we have been discussing about different relaxation schemes line relaxation

and Block Relaxation schemes. In an with a focus to solve the matrix equation not in a

point wise manner; that means, each element of the x factor will be updated through the

iterative schemes, not going in that way rather trying to identify a part of the solution

vector and try to update it at one go and then do it for different parts. 

So, we have discussed about alternate direction implicit method which I said is a line

relaxation scheme. In ADI the coefficient matrix A is decomposed into two parts H plus

V; H comes from disiteration in x-direction y comes from this V comes from disiteration

of in y-direction.

So,  that  the  pin  now the  pentadiagonal  matrix  problem can  be  decomposed  as  two

problems sort of this is ADI is typically for 2-dimensional Laplace equation problem. So,

instead of AU is equal to f we can write HU plus Vu is equal to f and HU is has x-

directional disiteration, Vu has y-directional disiteration. So, this is pentadiagonal A x is

A is pentadiagonal, H is tridiagonal, V is also tridiagonal. 



The idea is first solving HU is equal to f minus Vu star and then solving. So, this is HU k

plus half is equal to Vu k rather last updated value and then solving Vu k is equal to f

some f star f star 1 and f star 2 some value minus V minus HU k plus half and updating

it. So, this is broken in a pentadiagonal matrix equation is broken into two tri diagonal

matrix equations and we know the tridiagonal matrix equations are much faster to solve. 
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Similarly, large matrices can be decomposed into small blocks on which direct solution

methods if not direct solution method some of the iterative solution methods which are

easy to implement can be used and iterations are performed over blocks of the solution

vectors. So, instead of solving the entire matrix equation we will break the matrix into

small blocks and try to solve for each of the small blocks.

And while solving for one particular small block we will assume that the Gauss value is

obtained for the vectors which are associated with the other small blocks. Only for the

diagonal part we will use the we will solve it for off diagonals will assume the Gauss

value for the blocks and then iterations are performed over blocks of solution vectors.

This can be a fail when the matrix is very large say a million by million matrix which is

very often we encounter million by million matrix.

It will be much difficult to store the matrix we need some storage algorithm to consider

the sparsity of the matrix and store the right nonzero values. Because storing zero values

will be will add a redundancy in the overall algorithm and also when you are using some



storage algorithm that only nonzero values and their right pointers are stored you have to

use a memory management methods also.

So,  for  a  large  matrix  the  storage  and  memory  access  will  be  much  difficult  much

complex say and it can be easy if we break down into small blocks we will only store the

small blocks and doing any memory management will be easy also in the small blocks.

So, this is not only memory management and by the computer, but it is also important

when we think of that thing that a part of memory management is actually being done by

the processors and the computer architecture also.

So, it is accessing memory at the RAM, putting some of it in cache data from the cache,

starting with a memory location and going along the pointer to the new memory the new

element of that memory all these things this will be easy when you break it into small

pieces of blocks. Direct inversion of block matrices can be possible, you have seen the

direct  inversion  is  usually  a  costly  method  except  a  TDMA we  if  we  have  to  use

something like ALU or some algorithm like Cholesky etcetera. These are costly methods

and they take almost and if consider an n by n matrix they take almost n cube operations.

So, you for a million by million matrix it will be extremely large number of operations.

So, you probably cannot do it in any practical purpose, but if we break down into small

matrix matrices we will may get 100 by 100 matrices, where n cube operations is still

possible.  So,  direct  inversion  can  be  is  possible  for  block  matrices.  And  parallel

algorithms like Schwartz  method can be designed idea parallel  algorithm is  that  you

divide  the big matrix  intuition  equation  into number of  small  matrix  blocks and ask

different processors in a computer architecture to solve different blocks in parallel.

Nowadays  we  get  computers  with  dual  core  16  core  even  32  core  processors  32

processors are presented in the computer. So, ask each processor to look into one block.

So, that the small 32 small blocks can be done in parallel then you can save a lot of time.

Instead of do going from one to million maybe each processor is going 1 to 1000 rows

and considering 32 plus 32000 rows are done in the time in which you are supposed to

1000 rows. So, this is the parallel process we will discuss about parallelization in few of

the later lectures which also can be done once we think of a block partitioning of the

matrix or when you think of block relaxation schemes. 
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So, how will it be let us consider an equation Ax is equal to b the matrix A and the vector

x and the solution vector and the and the RHS vector b such that a is divided into number

of small matrices all A 11, A 12, A 13, A pp all these are matrices. A is decomposed into

number of small matrices each is a block matrix and x is decomposed into p blocks xi 1,

xi 2, xi 3, xi p excess may be excess ten thousand elements and each of them there are 10

blocks each has 1000 elements. 

So, all these xi’s will be added up to give us x and similarly b is also decomposed into

some small blocks. LHS of the equation corresponding to any row now can be expressed

as right hand side is summation of A and multiplication of A and x for one particular row

will give Ax of that particular row. Ax is nothing, but A ii xi i so, what is the first row of

this equation if we go back that.
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 We are solving Ax is equal to b the first row will be a ij x j is equal to b i. If we think of

a block partitioning this will be this can be also expressed as summation of A 1 i xi i, so,

this is first row a 1 j v j is equal to this summation of A 1 i xi i is equal to beta once the

entire equations first row of that because this is also a matrix also vector equation beta 1

has number of elements, the first row of this particular element. So, we can say that the

left hand side of this equation which is a 1 j x j or a ij for any a particular  y  can be

expressed as A ij xi j into xi j. 
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So, let us split a into A is similar to splitting of Jacobi GS or SOR scheme of the full

matrix,  that  is  A is  equal  to  D minus E minus F; D is  the  diagonal,  E is  the lower

triangular, F is upper triangular matrix. Based on the our scheme whether it is Jacobi or

Gauss Seidel we will use will take you multiply the last Gauss value with E F or E E plus

F we will say that, but we can revise the discussion on basic iterative methods. This is

the standard splitting for Jacobi or Gauss Seidel. 

In a block decomposition D will be the blocks containing the diagonal terms. Earlier in a

general splitting of a for a basic iterative point relaxation scheme A only contain D only

contain the diagonal elements. Here instead of diagonal elements they are containing the

diagonal blocks E contain the  lower triangular blocks,  F contain the upper triangular

blocks and E and F both has diagonal element 0. So, instead of splitting it by element we

are splitting it by blocks of matrices. 
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So, the Jacobi iteration step is Dx k plus 1 E F plus k x k. If we consider the block

splitting of the matrix this will be A 11 A 22 etcetera. So, this is one block of matrix is

multiplied  with  the  solution  value  that  we  have  to  find  out  and  E  plus  F  will  be

multiplied with x k which is the last available value. So, this is A ii xi i k plus 1 E plus F

x k i beta i. Here we are writing x k not we are writing xi because x k contains the entire

solution vector and entire solution vector has to be multiplied with E, E and F and each E



and F has diagonal 0. So, that particular vector which is xi k is now being multiplied with

E and F. 

Note that the structure of the diagonal matrix D and the that has been utilized here that

the diagonal matrix is A ii is the structure of diagonal matrix is the diagonal blocks here.

This matrix is D is not actually a diagonal matrix rather a block diagonal matrix here and

we also use the fact that E and F has diagonal entries 0, so, we can write this. Using the

last relation the relation we have developed here we can write xi i k plus 1 which is the

new updated block of solution vector. This is not a single solution vector rather this is the

block of solution vector a number of x’s; number of x’s are involved in this vector is

equal to A ii inverse E plus F x k plus A ii inverse beta ii is equal to 1 to p. 

Now, we can see that this is not a direct solver points or relaxation scheme so, that this is

D  inverse.  So,  this  is  a  single  1  by  the  diagonal  value  this  is  inverse  of  a  matrix.

However,  as  we  think  of  dividing  the  matrix  into  large  number  of  matrices  a  large

number of matrix blocks this matrices are basically smaller matrices and we can easily

find out their inverse, it will be not that complex. Complexity is usually in terms of what

are the order of operations we need to do to find out in that inverse. Inverse is inverse

finding is same like Gauss elimination scheme takes n cube operations. 

As we have broken down the matrix into small blocks the number of rows in each block

is very small. If you think of million by million matrix maybe you have 1000 rows in

each block. So, this will be much less time consuming number of steps will be less to

find out A ii inverse because this is a small matrix the number n is smaller here. And we

have to do it for all the blocks starting from first block xi 1 xi 1, xi 2, xi p if you do it for

all the blocks and then again up iterate it this is an iterative method which is discussing. 

The this particular equation is very similar as the basic Jacobi iteration step and if we can

think this is actually be Jacobi iteration step. Why because for all off diagonals we are

using x k which is the last iterative value and A ii inverse instead of A ii we are solving

an equation like that a the instead of directly finding inverse we can use something like a

Jacobi iteration also. So, this step can be exactly same as Jacobi iteration step if we use

Jacobi iteration for finding A ii inverse. But, we can because the A ii matrix is smaller we

can use some of the direct solution method or some other method to do it also. 



However, if Jacobi iteration converges this step should also converge. So, the iteration is

not in A ii inverse explicitly here iteration is on finding out xi k plus 1. This solution is

done some in some other method, but iteration is what that fact that xi k plus 1 is found

out and this is being it iterated again and again. So, this iteration must converge if the

Jacobi iteration converges.
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Here we can see an example of block relaxation this is the domain where we have thirty

points and a finite difference matrix, of it is a pentadiagonal matrix. So, along any line

there are five elements only and they are near that diagonals two super diagonals two sub

diagonal and one diagonal line this is the mesh from which we got the finite difference

matrix.

Now, we are doing a partitioning here. This is one group one group this is one group this

is one group and these are the three diagonal blocks we will get so, block of x vector. So,

that that is x 1 2 rather instead of x we should write u we are trying to solve A u vectors

we will trying to solve A u is equal to b say. 

So, xi 1 u 1 to u 12 is one group of block of vectors, xi 2 u 2 to u 24 is another group I

think I  should rewrite it this is xi 2, this is xi 3. So, what is that this is one particular

block of vector this is one particular block of vector and this is one particular block of

vector. So, what the matrix I will get that matrix will be decomposed into several blocks



and these three are the diagonal blocks which will be directly multiplied with xi 1, xi 2,

xi 3 when we are solving iterating for xi 1, xi 2, xi 3 etcetera. 

So, these are the A 1 A 11, A 22, A 33 the diagonal blocks and there are few of diagonal

blocks it is important to look that these two of diagonal blocks are basically 0 matrices.

So, we can eliminate some of the off diagonal blocks also from the calculations. And, A

the net the actual matrix A when we because we are solving the matrix equation A u is

equal to b, this A matrix is sum of all the small matrix blocks. 
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It is also possible to form blocks with the overlap; that means, that maybe this line is

being shared by two different blocks. So, you can think of another blocking like this so,

this is one block maybe this is another block and or rather let us do it like this.
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Maybe this is one block this is one block and we can say that this is another block this

blocks  have  some  points  in  points  common  to  them.  And  we  will  see  that  block

overlapping blocks are important just to maintain continuity of the solution as well as to

have some of the parallels algorithms can only work with overlaps so, you will see about

the overlaps later. 

The best thing of overlap is that when you will try to solve in this domain this point will

see the full stencil or full deciduous row for if there is an overlap considered we will

come into the overlap later. But, it is also possible to form the blocks with overlap that is

what  is  important  to  keep  in  mind  here  that  this  is  a  typical  blocking  with  non-

overlapping blocking what we are showing here is a non overlapping blocking, but we

can also have overlapping blocking. 
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Let V we will see the formulation of a block relaxation scheme let V i be a n into n i

matrix and V i is basically the columns of identity matrix of up to n i we will consider in

V i. So, it has it will have n row rows and n i columns so, there are n i columns which

had e j’s and they represent the j-th column of an n into n identity matrix. So, it is V i is a

truncated part of an identity matrix. 

Where, W i is chosen and another n into n i matrix with eta 1 e 1, eta 2 e 2 etcetera where

eta j represents the weight factor such that W i transpose V i is an identity matrix n i into

n i. And this is required to map the solutions V i will be required or as well as W i to map

the solutions xi to the right x say xi 2 I will take which will be after xi 1 or we can write

that x rather the u matrix sorry u matrix will be xi 1, xi 2 so on xi a xi p. So, if I find out

xi 2 that will come in one particular location of u matrix. 

So, I have to multiply something with xi 2 to make it assembly able to u matrix which

comes from these terms n 1 e 1, n 2 e 2. If there is or e 1 e 2, if there is over lap then if

there is no overlap than e 1 e 2 e 2 so, xi 2 into e 2 will keep xi here if there is no overlap

no overlap it will done there. If there is overlap then maybe this is the location of xi 1

and from here we will start the location of xi 2 so, you have to multiply something with e

1. 
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For no overlap between the domains eta is equal to 1 so, the V and W are basically same

in these cases.
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 Now, the block A ij of n i n j matrix which is an n i n j matrix can be given as A ij’s W i

transpose AV j. And similarly xi will be given as W i transpose x i I am I have used x and

u mixed x and u in the discussion. Either x or u is fine, because we started with the

problem A u is equal to b, but sometimes I confuse myself writing A x is equal to V both

are matrix equation be it u be it x is a solution variable.



However, in the present slides that I will upload I will make either x or u uniformly I will

make it making by itself. So, nevertheless the xi i will go to the solution vector x we are

discussing instead of u using this particular weight matrix W similarly beta will similarly

be mapped into b.

So, this is the idea that you have the large matrix b and the part of this the large vector b

is say beta q this. So, once you know beta q this will be multiplied with W q transpose b

is beta q this will be multiplied like that. So, instead of multiplying W with beta we are

doing, but W q is W is transpose multiplied with b that will map b to beta. And, if there

are n blocks we can write x is equal to i is equal to one to n V i xi i. So, this is how xi to

V x mapping is through V xi 2 x mapping is through V and x to xi mapping is through W

they can be same for non overlapping case for overlapping case it will be W will have to

carry and weight. 

Each component of Jacob iteration can be rewritten as projection of the residual into of

the in the overlap domain is equal 0. So, we will get a residual in a in the in a sub domain

if there are projections then we will project the if there is overlap then the overlapping of

the residual will be obtained. However, some of the residual as projected to the main

domain should be 0. 
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And that comes as W i transpose b minus V i W i transpose x k plus 1 is if j is not is

equal to a n V j W j transpose x k is equal to 0. If there is no overlap V i transpose V i W



i transpose V j W j transpose this terms are 1, right. If there is no overlap V transpose W

is an is again an identity matrix V and W are same. So, this becomes an identity matrix,

but if there is overlap they are not identity matrix. So, this becomes the iteration Jacobi

iteration step projecting that the new solutions the residual from the updated solution and

non updated solution that residual must be 0 into the overlap domain.
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 Now, we use the fact that xi is equal to W j transpose x. So, we multiply W j W i

transpose with this and write j is equal to. So, whenever W i transpose x is there this is xi

k. So, the new if the iteration step will be written as xi k plus 1 which comes from here

and this is equal to W transpose AV is basically A ii so, A ii. So, this will give us A ii xi k

plus 1 is equal to A ij x xi k like that. 

So, this will be xi i k plus 1 is equal to xi i k which will again get here plus A ii inverse

W i transpose b minus Ax k. And, this is what we exactly do in a Jacobi iteration step and

we get a get the mapping weight function W and then multiply it is transpose with b

minus Ax k. And, then multiply to A ii inverse and add with xi k and now using this the

W is constructed W and V constructed I can get a general algorithm for Jacobi block

relaxation scheme.
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 Which is k is equal to 0 to up to convergence do it up to convergence for each block

write A ii delta I is equal to W i transpose b minus Ax k solve for delta I and then update

x k plus 1 as x k plus V i delta i because delta is a solve for xi k plus 1 minus xi k that is

in  delta  i.  So,  you  have  to  multiply  V  i  with  and  update  x  k  plus  1.  For  better

convergence instead of block Jacobi we can think of block Gauss Seidel because each

scheme is using the last iteration value of x in block Jacobi in Gauss Seidel instead of

using x k it is using the value x which is the last available value in the neighboring

blocks rather. 

And, you solve not only neighboring blocks in the in the entire domain the last updated

value you solved A ii delta i is equal to W i transpose b minus x and update in each block

you update x like this. So, this solution can be done using GS or using Jacobi if we want

do a full Jacobi in a block Gauss full Gauss Seidel in a block Gauss Seidel, this solution

should also be done using Gauss Seidel. 

But, however, when using this particular x it is updated from the neighboring values the

neighboring values which the neighboring blocks or the last blocks which are above the

xi’s which are above this particular xi particular block will have the updated value and

the other one will have the last iterate value, this very same as Gauss Seidel.

Gauss Seidel iteration needs less storage because we do not need to storage x k plus 1 in

x k separate leads needs least  storage and also faster because,  you are using the last



iteration  value.  However,  the  Jacobi  method  can  be  parallelized  due  to  less  data

dependency in that sense that once we have the last iteration value we can go to the new

Jacobi step. And, if we are doing in different processors none of the processor has to be

aware of the fact that what is the updated value in other processors, everybody is using

the last iteration value. 

Gauss Seidel block Gauss Seidel cannot be parallelized in that way because it is data

dependent one particular block has to be aware of what happened to the what is the

updated value after the previous blocks in that during that particular iteration the blocks

which came before this particular block has been updated. So, it is difficult to paralyze it.
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Similarly,  Krylov  subspace  methods  can  have  block  operations  and  they  are  often

performed using block your called block Krylov subspace methods. They are equivalent

of Krylov subspace methods, but they are done for matrix blocks and there is a block

Arnoldi method which starts with an unitary matrix V 1 dimension n into p computes the

Hessenberg block matrix V i j transpose V i transpose AV j.

 And then does an orthogonalization of it; that means, it from AV multiplies V with a a

and subtract the V H and then does a Q-R orthogonalization of W to find out W. W is V j

plus 1 H j plus 1 j and comes with all the basis functions of W and V. But, these are not

basis of the Krylov subspace rather they are basis of the Krylov block subspaces. 



This can be compared with original Arnoldi’s method where which started with a vector

V 1 instead of starting with an unitary matrix V 1 it started with vector V 1 of unit norm

and  computed  Hessen  H  and  Hessenberg  matrix  and  W by  using  vector  vector  dot

product. Here with instead of  matrix here vector vector dot product is used instead of

vector and matrix vector dot product and also a matrix vector product has been used

respectively. So, the product products are little the processes are little essentially similar,

but instead of starting with a vector v instead of starting with a vector v they are starting

with a matrix V 1 that is the difference. 
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This is block Arnoldi algorithm and this is if we compare with the Arnoldi method it

starts with a vector V 1. So, this is the this these are the difference it starts with a vector.

Here it starts with an unitary matrix, here this is compared as a matrix vector product and

then it is dot with this. However, there is a matrix product and then it is transpose with H

similarly the W j computing is also W j compute is also different it blocks subspace. So,

we get the basis vectors for a block of Krylov subspace;  Krylov subspace of the block

matrices. 
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We defined I k as identity matrix and the and we will see that the following relationships

hold  same  similar  type  of  relationships  which  we  got  for  simpler  or  point  Arnoldi

method. The following relationship shows that Hessenberg matrix H m is H m is not a

Hessenberg matrix rather it has p sub diagonals and it is called a banded Hessenberg

matrix all these are banded matrices.

And, a relationship like this holds which is very similar to our relationship we obtain the

to get the Hessenberg relation between the Hessenberg matrix and the Krylov subspace

basis vectors. Now, instead of a basis there is a basis matrix instead of the Hessenberg

matrix is a band matrix. But, Krylov subspace type of relations are not were applicable

for the solution vector x earlier now it is applicable for blocks of the solution vectors

xi’s.



(Refer Slide Time: 32:41)

 The same idea with the same idea block full orthogonal method or block GMRES can be

obtained. Block Krylov space methods obtain a group of basis vectors instead of a single

vector in each step. So, instead of finding out basis vector it gets a basis matrix we can

say and the iterations can be done between the blocks of the solution vectors. Within

each block I can use even a direct solver, that is how this can give a faster solution or this

can be paralyzed also. 

So, we have discussed about block relaxation schemes also line relaxation schemes in

last  two sessions.  And,  we can  see  that  block relaxation  schemes  has  a  potential  of

paralyzing the solution in a sense that the solution task will be distributed into number of

computers which will  operate together. And Instead of one computer doing all  this n

square order or n cube order of operations one computer will do less task and all of the

computers we work in parallel, so that the computing tasks can be carried away in less

time.

Instead of one people carrying a load if two people instead of one person carrying a load

if  two people carry the same load it  can be much faster. That is  the idea block that

distribute the matrix into several blocks and use different computers to do it in parallel,

that is one great advantage of block partitioning can be this can be exploited for parallel

computing and we will look into it in the subsequent classes.

Thank you.


