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Welcome. We are discussing about Biconjugate Gradient Method and we are trying to

demonstrate the developments over Biconjugate Gradient Method, where the number of

computational steps in terms of matrix vector multiplication could be reduced. And also

looking into the possibilities of reducing the matrix eliminating the matrix transpose and

vector multiplication step.

So, on developing that method in a on a step towards that we discussed that the residual

and the auxiliary vector in both the Krylov subspace of A as well as Krylov subspace of

A transpose can be expressed as 2 different polynomial functional of A and A transpose.

The  functional  phi  is  defined  for  just  you  have  been  did  it  in  the  last  class  as  the

polynomial functional phi is for residual and polynomial function pi is defined for the

auxiliary factor..

And we are trying to develop transpose V is variant of Biconjugate Gradient Method..
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So, now is the parameter alpha is written as alpha is equal to r dot r r j dot r j start A p j

dot p j star and we write try to write all the polynomial functional instead in cases of r j

and p j phi j A r 0 which is polynomial form of r j and phi j A transpose r r 0 star.

Similarly A A into p j is pi j A r 0 and p star j is pi j A transpose r 0. Now r 0 is a vector

which is multiplied with the polynomial function. This is this will be supposed to be a

suppose it be a polynomial of a matrix. So, when we do this product, we get phi j star.

So, this vector will come out and this is this is the dot product which is between these 2

vectors.

So, this will be phi j star A r 0 dot r 0 star and we will get A pi j star a similarly r 0 dot r 0

star. So, we in order to find out alpha instead of doing A transpose etcetera, if we can

evaluate the matrix the polynomials we have to find out the polynomial product of phi j

square A and A pi j square A also you need to get r 0 r r dot r r and multiply it with that.

Similarly in the other parameter beta can be found as r j dot r j r star r j star plus 1

divided by r j dot r j star which is similarly if we replace the values of r j plus 1 r j

etcetera we will get phi js plus 1 square A r 0 phi j square A r 0 r 0 star.

Now, the  issue  is  that  that  are  we  actually  reducing  our  steps,  if  we  assume some

polynomial form of the residue and the auxiliary vector. If we try to look it as apparently

as  it  is  coming  that  we  are  not  reducing  the  steps  because  doing  this,  finding  this

polynomial and doing the square of this polynomial will be itself very cumbersome step.

So, what will try to do is to develop a recursive relation here.

So, that we really do not have to do the all the calculations at you every step doing

square  finding  doing  lot  of  operations  on  a  matrix  rather  we  can  use  some  simple

recursive relation and trying this out. And now we will look into few variant sub that of

this method few of the transpose p variants of the method.

First is the conjugate gradients square method, where r 0 the residue norm r will  be

assumed to of A to behave in a certain polynomial form and. So, that the now the residue

norm will try to strict it to here; r 0 star is the initial residue norm of the left space or A

transpose space for the Krylov subspace of A r 0 or A while we are solving x is equal to b

for the Krylov subspace related to A we will try to focus obtain the residue norm from

this part.



So, let us see the steps.
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The BICG step is alpha j is equal to r j dot r j start by A p j p j star and we update x j plus

1 using alpha we update r j plus u 1 also using alpha and then, we get r j plus 1 start also

using alpha and A transpose p. This step here basically trying to eliminate and then, we

get beta j and based on beta j we update the p j. This is the matrix vector product; this is

because same matrix vector product is used here. So, once we do this we can store this is

the transpose matrix vector product. We are specifically trying to eliminate this particular

step. The class of algorithms, will try to find will use recursive relations for phi j square

A and pi j square A.

So,  that  in  the  alpha  calculation,  I  required  phi  j  square  A.  So,  if  I  can  have  some

recursive relation there, we can probably avoid the matrix as well as transpose matrix

vector  products.  You  see  the  steps.  This  is  also  to  note  that  polynomials,  these

polynomials are not computed explicitly rather they help in formulating the theory. So,

none of this polynomials phi j and pi j, I am writing down the b polynomial expression

and trying to work on them do lot of matrix to the power j calculations using polynomial

such terms.

We are  not  doing  that  we  are  not  even  writing  the  polynomials  explicitly,  we  are

assuming there is  a  polynomial  form and it  behaves  like  a  continuous function of  a



higher order in this  in the space and we will  use this  polynomial  form to develop a

recursive relation and finally, get a theory.

So, the idea of both the methods we look Conjugate Gradients Squared Method as well

as  Biconjugate  Stabilized  Method,  the  idea  of  this  methods  is  using  some recursive

relations  to  make  this  calculation  simple  and  for  that  we  are  using  a  polynomial

expression of residue vector and the auxiliary vector..
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So, we see the conjugate gradient square method, we see can algorithm where the norm

of the residual at j-th iteration is obtained as r j is equal to phi j square A r 0 and we start

with recurrence relations for the polynomials phi j plus 1 that is the next iteration how

phi will be updated is equal to phi j minus alpha j t pi j, there is a recursive relation.

These relations actually came out of a algebraic manipulations so that at end we get a

nice form, and nice way to replace the Biconjugate Gradient  Algorithm,  keeping the

main principle same that the r and p vectors should be or truth follow the orthogonality

relations that we started with.

Similarly  for  pi  we get  another  recurrence  relation.  This  is  these  are  the  recurrence

relations we are assuming to start with. Now using this relation recursive relations phi j

plus 1 square, t I am dropping here because all these are functions of t. So, the function

functional of t, I am dropping here. So, we are try trying to develop the relation for the

polynomial,  keeping it as a function of a single variable t, but same relations will of



course, all for polynomials when will a same polynomial when applied over the matrix

A.

So, phi j plus 1 square is phi j square minus 2 alpha j (Refer Time: 08:54) terms squaring

this alpha square j square t square pi square. Similarly pi j plus 1 square is phi j plus 1

square plus 2 beta phi j plus 1 pi j plus beta j square pi square j. So, phi j plus 1 square is

related with all the phi j pi j square terms alpha j square beta j square which will be

evaluated in last step if we start with some guess value.
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Apart from that there is a product term pi j phi j and there is a product of phi j plus 1 pi j.

So, you have to see the relations from them. Then, using simple algebraic relation phi j pi

j is phi j into pi j is again we wrote pi j plus 1 is beta j plus phi j plus 1 plus beta j pi j.

So, pi j is pi j plus 1 is phi j plus 1 beta j pi j. Therefore, pi j will be phi j beta j minus 1

pi j minus 1. So, phi j pi j is equal to phi j plus phi j plus beta j minus 1 pi j minus 1

which will give us phi j pi js phi j square plus beta j minus 1 phi j pi j minus 1. So, in

case we know already know pi j, we can find out; you already know phi j and we know

the last iterations value we should be able to find out phi j pi j.

So, the recurrences can be obtained as phi j plus 1 square is which was phi j square

minus 2 alpha j t pi j phi j plus alpha j square t square pi j square is equal to phi j square

minus alpha j t common 2 pi j phi j minus alpha j t pi j square, which is again phi j square

minus alpha j t j now pi j phi j can be replaced by this 2 phi j square plus 2 beta j minus 1



phi j pi j minus 1 minus alpha j t pi j square. So, phi j plus 1 square can be evaluated

through this recursive relation and if phi j square phi j pi j pi j phi j and pi j are known

and also beta j minus 1 alpha j on this terms are also. These are right recursive relation, if

we know the last iterations value, we can calculate it.  Similarly phi j plus 1 pi j,  we

substitute phi j plus 1 which is phi j minus alpha j t pi j into pi j and we get a relation phi

j square plus beta j minus 1 phi j pi j minus 1 minus alpha j t pi j square.

So, if I know again phi j pi j and pi j minus 1 beta j minus 1 alpha j, we can find out phi j

plus 1 pi j similarly pi j plus 1 square is also can be found out by phi j plus 1 square

which is already evaluated plus 2 beta j pi j plus 1 phi j pi j plus 1 phi j is also evaluated

plus beta j square pi j square.

So, we get a set of recursive relations of phi j plus 1 square phi j plus 1 pi j and pi j plus 1

square here. So, recurrence is obtained for these 3 terms and now we will see that how

we will this help us remember for r and p we have a expressed in terms of phi and pi and

we obtained the alpha in terms of phi and pi instead of directly writing it in terms of

matrix vector and vector-vector products.

With this recurrence how we how things can be helps? So, this recurrences available is

applicable for phi of a single valued function t as well as phi of a phi applied over a

matrix A. So, if I know phi applied over the matrix A phi 0 phi 1. So, apply define a

matrix a we can phi phi 2, phi 3, phi 4 etcetera; similarly, other terms..
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The  auxiliary  vectors  are  defined  as  r  j,  now  in  conjugate  gradient  square  method

auxiliary vectors are defined as residual and auxiliary vector r j is equal to phi j square A

r 0; p j is equal to pi j square A r 0 and q j, I define another vector q j which is phi j plus 1

A pi j A r 0. So, the recurrences can be obtained in terms of r p and q phi square pi square

and phi r obtained and we can write nice recurrence relations in terms of r q and p.

So, we develop the recurrence relations for the polynomials;  express the residue and

auxiliary  vectors  in  terms  of  polynomials  and  now we  obtain  the  set  of  recurrence

relations for r j plus 1 q j and p j plus 1. Now, we see why matrix vector and vector-

vector products were matrix transpose vector products are required; required to find out

alpha and beta.

Matrix vector product was required to find out alpha which is A p; matrix transpose

vector product if we look into the older BICG algorithm, main BICG algorithm matrix

vector product was required to find out r j plus 1 star which will be again required to find

out beta j; matrix transpose vector product. This is the matrix transpose vector product

which is required to find out r j plus 1 star.

Now, if I already get a recursive relation for r j plus 1 star without using matrix transpose

vector  that  problem  is  solved  this  step  is  eliminated.  So,  we  get  the  recurrence

relationship r j plus 1 is equal to r j minus just substitute the relationships in terms of we

substitute that we got this recurrence relations and we substitute it that phi j square plus 1

r 0 is r j.

Substitute these relations. That r j plus 1 r j minus alpha j A 2 r j beta j minus 1 q j minus

1 minus alpha j A p j. So, one matrix vector product is still staying there because from

the scalar form of the polynomial form, you know came to the vector form. So, one

matrix vector is still staying there. The same matrix vector product is being utilized here.

However, we did not need to till  now we did not need to think of any r transpose A

transpose the x product or A transpose p product; all this is A p product.

And now, we have to see how what are the recursive relations for alpha and beta or how

to use these recursive relations to find out alpha and beta. Because alpha and beta are r q

and p can be updated q is a new auxiliary vector, we have introduced here. r q and p can

be updated through this relations alpha and beta cannot be..
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So, the recurrences are obtained in terms of r j plus 1 q and p into and we introduce a

new auxiliary vector u j which is r j plus beta j q j minus 1. So, this becomes basically

twice of r j and then recurrences can be written as q j is equal to q j is equal to u j minus

alpha A p j; r j plus 1 is equal to r j plus 1 a j u j plus p j; u j.

So, q plus u p j plus 1 is u j plus 1 plus beta q j p beta j. So, there is still I can see there

are still 2 matrix vector products one is A p j; another is a u j plus q j. However, the

matrix vector transpose made transpose matrix and vector product that has been avoided.

And once we can get r j, we have the relation that r is equal to b minus A x.

So, r j is equal to b minus A x j. So, when we have a relation for r j plus 1, we can get the

relation; update relation for x j. Only the negative sign will be positive here and this will

be divided by A. So, r say this is r. I can write r j plus 1 is equal to b minus A x j plus 1 r j

is equal to b minus A x j. So, r j plus 1 minus r j is equal to minus A into x j plus 1 minus

x j. Using this we can up get the updated relation for x j plus also..
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So, you get a complete Conjugate Gradient Squared Algorithm, where alpha and beta are

calculated  in same way as matrix  vector  product.  For calculation of which needed a

matrix vector product of A p into calculate alpha,  similarly q also needed the matrix

vector product of A p; r j plus 1 instead of using a transpose matrix vector r j r star; star

as not required to we do not need to calculate the star here only. r 0 star will be sufficient

to complete the entire algorithm because r j plus 1 star has a relationship with r 0 star

which you are exploiting here and instead of using A transpose, we are using another

matrix vector product A into u plus q j.

So, the transpose matrix into vector product can be completely eliminated in Conjugate

Gradient  Squared  Method  and  please  note  that  we  have  used  a  polynomial  based

formulation, but never use the polynomial explicitly. There is a beauty of this method.

Transpose vector make a vector transpose matrix into vector multiplication is avoided.

Still I can look into 1 significant 1 serious issue here; there is while calculating q, I am

using alpha into A p. Alpha is calculated using A p..

So, the round of error that I am obtaining from while calculating A p is A multiplied with

the; or added with the round off error I am doing with alpha A p. Similarly while doing x

j plus 1, I am doing x with alpha which is obtained through the round off error it is still

there and then, I am multiplying it with q and getting another sort of round off error.



Multiplication does the actually is reducing the error rather; that means, adding up of

several round off error here. So, there is also a chance of numerical instability because

round of the error is high. The implementational problem due to A transpose; transpose

matrix vector multiplication is avoided, but the numerical instability issue is still there..

(Refer Slide Time: 21:15)

So, the observations are how the high round of error due to squaring which is possible

and line 7, what was line 7? Line 7 is r j plus 1 is equal to r j minus alpha j A u plus q j

right and this alpha j is obtained from a matrix vector product. There is some error there.

A is again being multiplied with u j plus q j, where q j is also obtained by alpha j A j. So,

lot of calculations are involved here; lot of multiplications are involved here and that also

shows that round off error can be very high and the residual can be computed wrongly in

this step. Line 7 may compute wrong residual.

Now, due  to  twice  multiplication  of  A,  which  again  can  be  a  serious  issue;  so  it  is

important  to  stabilize  or  smoothen  this  formulation.  This  formulation  is  not  also

stabilized enough. Though the transpose matrix vector product is that step is eliminated,

implementational  issue  has  been  eliminated.  However,  the  solution  is  not  stabilized.

There can be numerical issue errors also..
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So, we go for a new method which is again using the idea of Conjugate Gradient Square

Method and the principle of Biconjugate Gradient Method which stabilizes the round of

issues due to round off error which is called Biconjugate gradient stabilized method and

very  popularly  known as  BICGSTAB method.  The  method  produces  iteratively  and

update of residue vector of a form r j is equal to phi j A; psi j A phi j A r 0. Earlier it was r

j was only determined by phi.

Now, we introduced another component psi. What is the role of psi? The role of psi is to

smooth  the  function;  the  error  is  to  stabilize  the  method.  Here  the  psi  j  is  a  new

polynomial which is introduced to stabilize or to smoothen the convergence behavior of

conjugate gradient square type of algorithm and this is defined through the recurrence psi

j t is equal to 1 minus omega j psi j there should be psi j minus 1 psi j minus 1 t into r.

So, this in this r is not there, psi j t is equal to 1 minus omega j t psi j minus 1 t. I will I

will  rectify  this  equation  in  when  I  will  upload  the  slides.  So,  here  psi  j  is  using

something it  has a recurrence relation; that means,  its related with the last  times last

iterations value and there is a factor omega which is multiplied with t is updating it and

based on this omega this will the behavior of psi can be smoothened. Value of omega has

to be determined in each step so that it gives the optimum result to smooth the function

psi is smooth the error psi.
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Let us find recurrence for the other be phi vector the similar way we did it for the last

vectors psi j plus 1 phi j plus 1. Now, just write the expression of psi j and into phi j plus

1 and psi j pi j similarly we get a recurrence relation. All the recurrence relation now

contain and stay along with alpha contain this; this is the phi j plus 1 and pi j that this

recurrence relations are same as the recurrence relations using in CGS method. So, here

we are using same relations CGS conjugate gradient CGS recurrence relations..

And check the recurrence relations, we have discuss wrote CGS method, same here CGS

recurrence. So, the recurrence relations we have developed for CGS we are using for pi j

and we are using for phi j plus 1 and we get a recurrence relations for psi j plus 1 phi j

plus 1 and psi j phi j; while it be needed to see.
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The polynomials are chosen to follow same iterative relations as CGS.
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The residue and auxiliary vectors are defined as r j is equal to psi j phi j r 0 you have

defined that and p j is equal to psi j a pi j A r 0.

Using the polynomial recurrences or double recurrence of the vectors can be obtained as

r j plus 1, the same method we have done for conjugate gradient squared. I minus omega

j A r j minus alpha j p j; p j plus 1 is r j plus 1 beta j I minus omega j and if we have to

use this recurrence relations, we need to find out alpha, beta, as well as omega.



Once we can find out this, then starting with the first residual and first auxiliary vector,

we can find out the next residual and next auxiliary vector. So, the entire problem will be

a residue vector finding problem once you can find out omega j beta j and alpha.
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Alpha can be calculated as original BCG as it in works single matrix vector product. So,

the or the original BCG using the orthogonal relation, relation can find out the alpha.

Beta can be calculated as rho tilde j plus 1; rho tilde is a new scalar introduced here by

rho tilde j into alpha j by omega j, where rho tilde j is phi j psi j A r 0 star which is phi j

psi j r 0 r 0 star that is r 0 r j r 0 star, the dot product between r j and r 0 star is rho j.

This is a little involved. I am not discussing it here due to lack of time it should have

taken a one more session there, where even look into exercise book here. Finding omega

is the next step.
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And  this  is  complex.  Omega  is  a  free  parameter  which  control  smoothness  of  the

iterations.  Alpha  and beta  were  related  with  the  Biconjugate  gradient  properties;  the

conjugate gradiency of the p j and a p j and p j star in the left and the A space the Krylov

subspace and the conjugate gradient between probably between r j and r j star; alpha and

beta determined based on this conjugate gradiency property. When is a new parameter

which is to control the smoothness itself?

Let us look into this step of omega. The residual vector is written as r j plus 1 I minus

omega j A r j A j A j A p j which is we are introducing a new vector s j. So, the residual

vector the original relation of omega what is what is the r j plus 1 is equal to I minus

omega j A r j minus alpha j A p j. Now I replace that as s j and I write this equation. So,

what is this? This is finding out the residue vector from the older residue minus some

vector s j. So, I have a older residue victor.

I subtracted something from there and then I try to multiply I minus omega j here to find

the new residual vector. This is kind of an optimization problem that finding out the

optimal alpha optimal omega, I talked about alpha which is synonymous here in a second

I am explaining that; finding out the optimum omega which will give me the first step

first step convergence. So, that the new residual becomes 0.

This is in a sense very similar to steepest descent algorithm that find the optimum alpha,

find  the  optimum statistical  design  parameter  based  on which  the  new residual  will



approach the that is the solutions. The new vector will approach the solution the new

residual  will  go to  0 and exactly  similarly  in  same way omega may be chosen as a

steepest  descent  step to obtain the new residual.  At steepest  descent step here which

gives us omega s is equal to A s j trans dot s j divided by A s dot s j; exactly same as the

steepest descent algorithm.
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So, we get the Biconjugate Gradient Stabilized Algorithm, where it started with a in any

initial value A x 0 and the initial residual r 0 is equal to b minus A x 0; p 0 is equal to r 0.

Alpha  j  is  calculated  very  similar  to  the  Biconjugate  gradient  original  Biconjugate

gradient method, but now we using r 0 only. Because r j contains the polynomial of the

another a part phi squared a part is contained in r j r j dot r 0 star divided by A p j dot r 0

star.

We introduce a new variable, s j r j minus s A alpha j A p j using s j, we get the optimum

omega and x j plus 1 and r j plus 1 are updated using that optimum omega factor. Beta j

plus 1 is similarly calculated and we are again using beta j plus 1, we calculate j.

So, what are the matrix vector steps here? This is one matrix vector step here; this is one

matrix vector step here and we can also see that there is nothing like a residual which is

dependent omega is dependent on s j. So, it is like it omega comes from A s j and then

multiplying  with  A s  j,  there  is  no  dependence  between  2  different  matrix  vector

products.



There are 2 matrix vector products, but they are not coupled. There is nothing like a

alpha A s j type of steps here, step present here. Therefore, the numerical errors are also

much controlled here. Two vector matrix vector multiplication no squaring, no vector;

once matrix vector multiply, again that is not being multiplied with something else no

squaring on the matrices.

(Refer Slide Time: 32:29)

And this is a table and first iterative solver for any general matrix. This is probably or our

target to show that we can have a stable and first iterative method for any general matrix,

we which can be developed right now algorithm an algorithm, can be developed right

now and can be utilized in any in an different purposes of solving equations. And we can

see that the number of iterations are much smaller for different size of matrices 16 by 16,

32 by 32, 256 by 256 matrices.

To a very high order of accuracy 256 by 256 matrix, the number of iteration is 269 to 10

to the power minus 11 accuracy.
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So, number of iterations are same as the number of rows of the matrix of same order. So,

we finally, obtained a methodology solver which iterates within n steps for an n by n

matrix and we can quickly compare 3 methods; Successive Over Relaxation, BCG and

BICG. We are Biconjugate gradient and BICGSTAB. For successive over relaxation this

is a 512 into 512 matrix. A is 512 into 512 and we are not converging up to retain very

high order of accuracy 10 to the power minus 9 we are leaving, so convergence is faster.

For  the  if  you  can  see  for  a  SOR with  optimum SOR parameter,  it  took  44  steps.

However, the residue is very smoothly falling down; starting from 10 to the power minus

2 the residue goes to 10 to the power minus 9. Below 10 to the power minus 9 and it is

monotonically reducing.

If I look into the Biconjugate gradient method, the residue is reducing it converges in 25

steps. However, after say after 13 step, 14 steps, 15 steps, 16 step, 17 steps suddenly

residue  increases.  Again  it  reduces  and  again  there  is  some  increase  in  residue

somewhere I guess. So, there is a there is an oscillation of residue. There is no increase,

but there is an increase, there is a increase in residue here.

So,  if  I  drop  r  versus  number  of  iteration,  it  is  coming  down like  this.  There  is  a

numerical instability. In that sense, if the numerical if the matrixes much complex and

much bigger,  this  numerical  instability  may this  may disturb the  convergence  of  the



method.  And same we can see for BICGSTAB, the residue is  actually  falling down;

however, there is some oscillation in the residue.

So, BICGSTAB probably may be showing similar method like this, but there is some

oscillation in the residue value 1.144 10 to the power minus 3, 1.49 to the power minus

3; residue increased somewhere, there is some increase in residue donot need no this is

not as significant as in BICG. So, this is also an oscillatory scheme and importantly this

schemes  runs  with  only  high  precision  machine  as  well  as  high  precision  declare

declaration of the variables in the code..
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So, took summarize we got BIC, G Biconjugate gradient or BICGSTAB works for any

non singular matrix. Convergence is non-oscillatory. Convergence is not non oscillatory,

convergence is sorry convergence is not non-oscillatory. There is a if I drop plot residue

verses number of iterations, there is some oscillation in that.

However, the important is that convergence is in lesser number of steps compared to the

other methods. So, BICGSTAB is a works for any non singular matrix is a non the not

high numerical error method which is a stabilized method and we will give solutions in

less  number  of  steps.  However,  there  are  some  oscillations  in  the  residue  while

converging.

Thanks.


