
Matrix Solvers
Prof. Somnath Roy

Department of Mechanical Engineering
Indian Institute of Technology, Kharagpur 

Lecture - 51
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Hello. We have been discussing about Biconjugate Gradient Method for solving linear

systems of equation. This is an iterative method and this method has emerged from the

inspiration we got from conjugate gradient method that is a Krylov subspace method can

be devised for symmetric matrices in case of conjugate gradient method which is a very

first method and also very simple implementation null method. 

Now, the  problem with  conjugate  gradient  method  was  that  it  is  restricted  only  for

symmetric matrices. So, we thought of developing a method which is for asymmetric

matrices or for any general matrix and for that Lanchow’s Biorthogonalization method

has  been  developed  which  we  which  we  have  discussed  in  last  few  classes  and  in

Lanchow’s by orthogonal method, we start with the Krylov subspace method, a subspace

of the matrix a as well as of the left matrix which is A transpose.

And we show we have seen that how this method has been developed into Biconjugate

gradient method which with suppose to be to give a convergence rate which is kind of

similar as the conjugate gradient method.

Now, we have discussed up to the development of Biconjugate gradient method in our

last class. As I said Biconjugate gradient method is a iterative solver, which is inspired

from conjugate gradient method. However, this is applicable for any general matrix. It is

not only strictly restricted to symmetric matrices as conjugate in methods where that. 

So, if we look into the Biconjugate Gradient Algorithm which we are discussing in the

last session that this is directly copied from a absurd’s book.
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And we can see that this algorithm has a number of matrix vector multiplications. As we

have discussed earlier, Matrix vector multiplications are the most costly operations in

matrix solvers and if even if we can bring down the number of iterations; but if number

of matrix vector multiplication is each iteration is a quite high, it will take a lot of time to

give the results. So, we usually try to reduce the matrix vector multiplication.

However, if we look here that the first matrix vector multiplication is for getting the

initial guess which is not required at the later iteration stage throughout. But the later

matrix vector multiplication like this finding this A p and finding this A transpose p, they

are done again and again whenever we go to one new level of iteration, we have to do

this two matrix vector multiplications. 

So, two matrix vector multiplications are associated here, which is if we think compared

with SOR or Gauss Seidel type of method, it has only 1 matrix vector multiplication each

in each iteration. So, number of mathematical operations in each iteration is high in one

sense.

However,  there  are  few  other  issues  one  important  issue  is  that  that  there  is  an  A

transpose p multiplication and we will discuss later. This multiplication is not only a

matrix  simple  matrix  vector  multiplication,  rather  a  matrix  transpose  vector

multiplication.



So,  given  a  matrix,  I  have  to  rewrite  the  code  to  do  a  matrix  transpose  vector

multiplication because when we have seen the programming implementations or the code

implementations, we have seen that there is a subroutine which does the matrix vector

multiplication  and  this  subroutine  is  called  again  and  again  when  we  need  this

multiplication.

However, that that particular subroutine will not work rather we have to write a different

sub routine which is also not of that much problem. But the problem may be that when

we try to access  the matrix  A,  we first  access  row wise and then  we are increasing

column wise.

But when we will think of A transpose p, the axis of different memory elements of a will

be  completely  changed  and  in  some  of  the  computational  framework,  it  creates

significant amount of problems. There is another very serious problem here that if I look

into the term if I look into the term alpha; alpha is obtained through r dot r trans r star.

r star is the residue in the left space or a transpose Krylov subspace and r is the residual

of x is  equal  to p divided by a  dot product  between A p and p star;  p star  is  again

auxiliary vector in the left Kriol subspace or Kriol subspace of A transpose r r 0. Now, A

p this is one matrix vector multiplication I am doing in A p which is used to calculate

alpha; when we have calculated calculating r j plus 1, we are doing r star j plus 1 which

is the new residual in the A transpose Kriol subspace. 

We are you doing at this multiplication A transpose p star which as I said its difficult

multiplication matrix transpose vector multiplication and multiplying it with alpha; what

is the implication? Implication is that we have earlier discussed about round off error. I

do some numerical calculation; I multiply the 3.3333; that means, say 10 by 3 into 1 by

7. I really do not get it as 10 by 21 rather I get a numerical value and this numerical value

is not something like an infinitely long decimal; after certain decimals places this value

is truncated and we accrue some round off error. 

So, one round-off error is accrued here because matrix vector multiplications has lot of

multiplications  and additions  and so,  the  round off  errors  will  be  build  up  to  some

substantial value. Otherwise round off errors for one single operation, it is very small;

but when we do thousands of operation, they add up and there is substrate some those

small some value added up here.



Now, we are get doing some we are encountering some round off error in this step. Alpha

is carrying this round off error and when we are coming into the r star j plus 1 step, this

round off error is again being multiplied with the round off error or again being sub

added  to  the  round  off  error  through  our  multiplication  which  is  obtained  by

multiplication of A transpose into p star. 

So,  the  error  is  actually  building  up and then,  we are  dividing  r  star  by  doing this

calculation  again  taking  dot  product  dividing  it  all  these  divisions  multiplications  or

adding up round of error. So, there is some conjugacy between the round off errors which

is building up and that is a serious issue in Biconjugate gradient algorithm.

As a matter of fact this is from my personal experience if I try to write a code on this and

run it this will not run in a single precision machine or with single precision variables. I

have to define all the variables to be double precisioned so that I can give I can reduce

the round off error to a much smaller value and then, only this particular algorithm will

work.

However, there can be cases that even with double precision this algorithm is failing for

certain type of matrices and that is the main concern especially that the we should will

devote this particular lecture on seeing that what are the issues of the round of error,

issues that the round off error is creating and also what are the remedies for it. So, the

issues  that  irregular  convergence  is  observed  due  to  round  off  rounding  error  with

increased computational operations. Another important thing is that convergence is not

very simply defined for Biconjugate gradient algorithm.

We can understand that this algorithm comes from approximating the basis vectors in

two  Krylov  subspace;  one  is  Krylov subspaces  of  A transpose,  A r  0;  r  0  is  initial

residual; another is the Krylov subspace of A transpose r 0 and we try to approximate the

solution in both the subspaces and generate more basis vectors and finally, converge to

the right result.

What happens in this stages that that error is some way a function of how the eigen

vectors of both the subspaces are well approximated and we see that, this the residual in

one subspace depends on the eigenvectors of the or the basis functions we obtained in the

in the other subspace.



So,  we can we can see that  that  none of the all  the parameters  like all  the residual

parameters are dependent on the other subspace in the algorithm. So, what happens that

we cannot write a strict convergence criteria, that error is always less than the error of or

residual is always less than the residual of the previous iteration for this case. Then, we

will see that the error some oscillation of the iterations and when the residual value is

quite  high,  the convergence is  good and when the residual  value reduces  to  a  small

number, the convergence slows down.

This things make this methods are little more complex, at least the results of this method

to  be  represented  in  which  looks  little  more  complex  and  we  see  that  there  is  an

oscillation in the residual when it is converging to a small value and if there is a round

off error, if there are high round off error, this oscillation some time does not converge to

a  right  result  and  sometimes  this  round  off  error  builds  up  and  those  the  entire

calculation, it does not converge or it converges to a wrong result.

So,  this  is  this  is  typically  identified  as  numerical  instability.  We call  this  to  be  a

numerical  instability  of this  particular  method Biconjugates  Gradient  method.  So, we

need to find out the remedies how to take care of that. 
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So,  the  issues  are  that  two  matrix  vector  product  in  each  iteration  makes  it

computationally costly. Also it might be difficult to multiply a transpose matrix with a



vector.  We  are  deliberating  on  this  point  in  the  last  slide  that  when  we  do  the

multiplication say we are writing say A into b.

So, each element in a row of A is multiplied with corresponding element in the column

vector b. This is multiplied with this; this is multiplied with this and they are added. So,

if we think of a computer, how is it doing that? It is going into the memories in these

memory space computer stores everything in its ram and it starts with a pointer which

moves around the stored values.

So, it  goes into a  particular  memory location and takes  this  value and goes into the

memory location of b and takes this value and then, the control goes to the next memory

location also both in the row of a as well as in the b vector. So, memory access is kind of

a in a contiguous manner a contiguous system of memory is being accessed (Refer Time:

12:54).

Specially, when you think of using high performance computing architectures like GPU

cards,  this  is  important  that  how this  memory is  being accessed because memory to

computing code bandwidth is very slow there. Now, if I have to do A transpose b instead

of multiplying b with the row elements of A, I have to go column wise.

However, the storage algorithm that I write for A or the way I try to I have my computer

access the memory of A is based on doing A b multiplication because A b matrix vector

multiplication what do we do, matrix-matrix addition what do we do or matrix vector

multiplication what we do regularly. 

So, there is a different nature of memory access which will be required, which can be

difficult  as  well  as  much  complex  from computational  aspect.  It  can  kill  down the

performance.  Another thing is possible that sometimes,  we do not form the A matrix

explicitly, there are cases when you are dealing with very large system of equation.

We do not store the matrix, we go to each row and see what are the neighboring values if

we can recall how the matrix is formed from finite difference or finite volume or finite

element method, we go to one element and see all that neighboring values and then do

the  required  multiplication  with  the  variables  given.  In  that  case  A is  not  formed

explicitly and getting A transpose is also extremely difficult.



Sometimes it is impossible because we are not forming A explicitly. We are somewhere

getting the products A b, but that is through the equations through the through each linear

equation with not forming the matrix a transpose. So, this gives certain over rate and

sometimes it becomes impossible to handle the systems. In cases when the matrix is not

explicitly stored, it can be impossible to multiply the transpose.

Further, difficulty may rise due to memory management and with is discussing this and

the  important  thing  is  that  when  we  discuss  about  GPU  computing  or  doing  high

performance computing and using good memory coalescence, writing efficient kernels

for GPU computing which needs lot of algorithmic to like considering how the memory

is being accessed and how data in terms of memory; how data is shared by different

computing course and things are going in parallel.

There  this  transpose  vector  multiplication  can  really  be  a  limiting  step.  Also  the

numerical instability that is due to accrued round off errors, numerical instability can kill

the final algorithm oh and furthermore, there is one issue which is complex convergence

relations involving W and V involving both the vectors Krylov subspaces.

Because  it  is  not  restricted  to  only  one  Krylov  subspaces,  there  is  another  Krylov

subspaces  which  is  important  here  and  therefore,  the  rate  of  fall  of  residue  is  in  a

complex manner and we see an oscillatory pattern here. I will show you at the end of this

and the next lecture,  I will show you some of the results using Biconjugate Gradient

method and we will see that the residue does not monocratically drop down to 0; rather

called oscillator due to the complex convergence vector.

So, considering all this that this is an oscillatory method on top of that there is some

numerical oscillation. The entire method might give us some wrong result. Also there can

be implementational issues due to matrix transpose multiplication. So, two things have to

be  seen;  one  is  that  that  how we can avoid  the  matrix  transpose matrix  into  vector

multiplication which is very important in terms of the actual performance of the solver

because  we  are  only  discussing  till  now, we  have  only  discussed  about  how many

iterations it will need and what are the computational costs etcetera.

But we have not discussed which is little more computer science aspect, importance is

there  in  computer  science  aspect  that  is  the  performance  of  the  solver  in  terms  of

memory handling; in terms of the fact that how the processors are getting data from ram



and how efficiently it is using the cache. And also the high performance computing or

GPU computing aspect, memory handling is important and when you doing a transpose

matrix and vector multiplication,  this memory handling is very complex and it might

stop the entire process.

Also as the algorithm is developed, sometime we can very easily see that gauss in a

Gauss Seidel Iteration method, we may not write it in the matrix form, we can take each

iteration and try to find out the updated value from guess value. Right, you think of a

Gauss Seidel  Iteration,  you may not write the entire  matrix  form; you just  write  the

equations and use the equations for the iteration for getting the updated value based on

guess value. So, there can be cases when you are not explicitly forming the matrix rather

we have sets of equations.

Because explicitly formation explicit formation of the matrix also need a data structure

how the  neighboring;  what  are  the  relations  of  neighboring  nodes  in  terms  of  i  j  k

rectangular element which is not present. In certain case, there finding a transpose is

impossible.  So,  there are certain  cases for which Biconjugate  gradient,  though it  has

tremendous potential in terms of the due to the facts that it is applicable for any general

matrix  and  it  is  a  Krylov  subspace  based  method  which  can  very  first  give  us  the

solutions. Though this potentials are already there for Biconjugate gradient method, it

can have this few problems. One is that implementation wise there can be a problem due

to A transpose b.

There can be a problem in terms of the code performance due to memory management of

A transpose b and also as the round off errors are increasing as well as the method has a

complex convergence pattern or oscillatory convergence pattern,  there can be another

problem. And why the round off error is increasing? Because matrix vector products are

giving us round off error as large number of multiplications and additions are involved

there and one matrix vector product is further being utilized to get and being multiplied

with another matrix vector product to get that r j plus 1 star.

So, matrix vector products are in a way calculate. So, that they it round off errors can

further achieve up and we can have lot of numerical errors, numerical oscillations along

with the, it inherent oscillation of the scheme when the values when the residual value is



coming down. So, where residual value is very small of 10 to the power of minus 8 and I

am getting round off error of the same order. So, 10 to the power minus 9 again.

So, it is it will be difficult to get the method converged because when the round off error

is when the when the residual is falling down, the cutoff value or the epsilon the round

off error is substantial. So, it does not allow residual to find out and it might converge to

a different error also. 

So, all these issues are there. So, to see that how we can get ahead with, we can get away

with the transpose matrix and vector multiplication part. As well as how can we reduce

the round off errors so that one matrix vector product is decoupled from another matrix

vector product, they are never multiplied together (Refer Time: 21:05). 
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So, it will be important to design similar algorithm similar to Biconjugate Gradient or

BCG algorithm with less matrix vector product steps involved. It is also is it possible the

question is it possible to eliminate the transpose matrix and vector product? This is one

of the limiting step implementation wise; some cases some cases memory wise or the

performance wise, it can we eliminate this step.

The whatever we do the finally, the vectors produced by Biconjugate gradient method

must satisfy the following 2 orthogonality  properties that is  r  j  dot r  i  star  r j  is  the



residual of A x is equal to b and ri star is the residual of A transpose. x is equal to b star

something is if they are orthogonal to each other if i is not is equal to j, they are 0..

Similarly, the auxiliary vectors p of a, a and A transpose and a ortho conjugate;  that

means, A p dot p p star is equal to 0 for i is not equal to j. If worked on these properties,

explicitly  you  have  shown  how  to  derive  this  properties  and  this  is  the  basis  of

Biconjugate  gradient  method  that  these  two  these  two  conjugate  properties  is  to

orthogonal probability must hold. 

So,  can we get  these two properties  even without  going into so many matrix  vector

products  as well  as avoiding the transpose matrix  vector  product.  So,  will  it  will  be

required to obtain these vectors r i and r j in functional form, where instead of doing A

transpose  we  can  probably  have  a  have  some  functional  of  form  of  r  and  p  is  a

polynomial  form of r and p so that the dot product doesn’t mean necessarily inverse

transpose of a matrix.

So, the idea will be that instead of forming the vectors as simple column vector will try

to express these vectors in a polynomial form and we will try to take the dot product and

other operations in the polynomials only. So, that this polynomials are never explicitly

formed, but only the polynomials are used as certain basis to create these vectors so that,

we can avoid from the computational complexities of Biconjugate gradient method. 
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So, what we look for is A transpose p variations of this method. Transpose p variation

means as it says clearly that this is designed to avoid matrix transposes in which are in

the  Biconjugate  gradient,  usual  Biconjugate.  So,  this  method  starts  with  assuming  a

polynomial form of the residual vector and is I start with r is equal to the initial residual

vector r 0 based on the guess value and that any iteration level the new residual vector r j

is r 0 multiplied with a polynomial of the width of the matrix A phi j into A r 0..

So, it might look a little difficult to appreciate how a polynomial of a matrix will look

like? A polynomial of a matrix, a polynomial a scalar will give us a scalar a polynomial

of a matrix will give us a matrix. So, finally, it is a matrix multiplied with r 0 that is the

jth residual vector is obtained by multiplying a jth order polynomial of matrix A; phi j is

a jth order polynomial with initial ratio obtained from the guess value. This polynomial

is defined as phi j 0, if I instead of A like this polynomial can this is an operator this can

operate on a scalar as well as it can operate on a vector or a or a matrix.

So, if I write say phi 2 is equal to phi 2 of t is a scalar; phi 2 t is equal to a t square plus b

t plus c. So, phi 2 of the matrix A will be A into A square which is A into A plus b A plus

instead of. So, there is a there is some matrix C some matrix C. So, here it is a scalar c

and it will be a matrix C and that there is a exactly that phi of 0 is a scalar 1. But if I put

a  0 matrix  instead of phi,  the polynomial  will  give us a matrix  which is  an identity

matrix.

So, phi 0 r is r is A is equal to 0; that means, all the elements of A r 0, then r j is equal to

phi j r 0 and this is identity matrix i. So, r j is equal to r 0. So, this is the same operations

which we are supposed to do over a scalar, we are now doing it over a matrix.
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So, now, what is done is that that similarly polynomial can be also assumed earlier we

are  assuming a  polynomial  form for  the  residue  vector. Similarly, we can  assume a

polynomial form for the auxiliary vector also. Also in the W space or the A transpose

space, vectors can be a assumed of similar form that r j star is phi j A transpose r 0 and p

j star is pi j A transpose r 0 phi and pi are two polynomials two different polynomial

functions and when they are operated over A, they give us phi j A into r 0 give us r j and

phi j A transpose r 0 gives us the residual in the left space or the A transpose Krylov

subspace which is r j star. Similarly, for the auxiliary vector we get the polynomials.

Now, in a typical BCG algorithm alpha j and beta j are defined as alpha j is r j r j star A p

j, p j star r dot product between r j and r j star divided by dot product between A p j and p

j star. Similarly, beta j is r j plus 1 r j dot product with r j plus 1 star divided by r j dot r j

star  and  what  we  will  do  is  that  we  will  try  to  replace  these  by  the  polynomials

expression of the residual and the a auxiliary vectors and we will see that if in some way

we  can  eliminate  some  of  the  matrix  vector  multiplications  mostly  we  will  try  to

eliminate the matrix transpose vector multiplication through this. We will see it in the

next class.

Thank you.


