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Welcome. So, we are looking into Krylov subspace based method and we have looked

into  a  number  of  methods  involving  Arnoldi’s,  method  full  orthogonal  method,

generalized  minimum  residual  method.  And,  then  we  looked  into  Krylov  subspace

methods which is same as Arnoldi’s or full orthogonalization method, but specifically for

symmetric matrices. And we saw that there are a number of interesting things happen for

symmetric  matrices  especially  we  get  a  conjugacy  of  the  auxiliary  vector  and  the

auxiliary vector comes due to the fact that the h matrix becomes a triangular matrix or

symmetric matrix. And from there we have looked into Lanczos algorithm which has

been modified as direct Lanczos and further into conjugate gradient method, which is a

very efficient and very simple method for solving symmetric matrix problems.

Now, the goal of the present lecture will  be and of course, this will be continued in

subsequent lectures that whether conjugate gradient type simple and efficient solver can

be designed for general any general matrix not only for the symmetric matrices. Earlier

you have seen that most of the matrix solvers has certain limitations.  In a sense that

Jacobi gauss Seidel or (Refer Time: 01:45) are applicable only for diagonally dominant

or irreducibly diagonally dominant systems. And conjugate gradient steepest descent are

applicable for symmetric matrices.

If we look into symmetric positive definite matrices especially steepest descent; if we

look into GMRES that is probably the only method which have looked into right now is

applicable for more wider classes of matrix, even the matrices asymmetric GMRES can

be  applied;  if  any  it  is  not  strictly  diagonally  domain  and  GMRES can  be  applied.

However, so our present target will be looking into general purpose matrix as the matrix

may  not  be  diagonally  dominant,  may  not  be  symmetric,  but  the  matrix  has  to  be

nonsingular for having a solution.

So, for any nonsingular matrix can we develop a method and we will explore Krylov

space  subspace  methods  more  to  look  into  that  part.  So,  what  we will  look  in  this



particular class is Lanczos bi orthogonalization analyzation which is a variant of Krylov

subspace method and then how a conjugate gradient type of methods can be developed

for general matrices for non symmetric matrices using Lanczos by orthogonalization.

(Refer Slide Time: 03:11)

We have  earlier  done with  Krylov  subspace  methods  and  the  projection  method  for

solving A x is  equal  to  b using Krylov subspace method,  is  a  method that  seeks  an

approximate  solution  x  m  from an  affine  subspace  x  0  plus  K  m by  imposing  the

condition that the residual b minus A x m is orthogonal to L m. 

L m is another subspace of dimension m, x 0 is initial guess, K m is also a subspace of

dimension n in case of Krylov subspace method K m is the Krylov subspace of a and r 0,

a is the matrix and r 0 is the initial residual minus x 0 in R n. And K m the Krylov

subspace is defined as span of r 0 A r 0 A square r 0 to a to the power m minus 1 r 0 that

is A m dimensional space in r m.



(Refer Slide Time: 04:05)

The different versions of Krylov subspace methods arise from different choice of L m

and the way the system is preconditioned. Preconditioning will look in look later we

have earlier discussed that this will come later. There are true broad two broad choices

for  L m which  you  have  seen  till  now in  the  earlier  examples  of  Krylov  subspace

methods; one is L m is equal to K m which is full orthogonal or method or FOM another

is L m is equal to AK m which is GMRES or minimum residual method.

This is a complete orthogonal projection and the second one is an oblique projection.

Now if we look into orthogonal projection in detail then we will see that for symmetric

matrix we can get Lanczos orthogonalization and can get conjugant method, gradient

method from full orthogonal method. Lanczos method will find the approximate solution

as x m is equal to x 0 plus V m y m where V m is the basis of Krylov subspace. And y m

can be obtained by inverting the tri diagonal matrix T m which comes from Lanczos

orthogonalization of the Heisenberg matrix upper part of the Heisenberg matrix basically

assumes a tri diagonal form we have looked into that.

So, y m is equal  to T m inverse beta e 1. And we have seen that inversion of a tri

diagonal matrix is simple and as well as TDMA type of algorithms can be used for direct

inversion;  there  can  be there  are  recursive  relations  which come and this  makes  the

problem simpler.



(Refer Slide Time: 05:45)

Conjugate  gradient  method  is  a  faster  method  in  terms  of  number  of  iterations  or

convergence  rate  it’s  the  convergence  rate  is  a  function  of  root  over  of  condition

numbers.  So,  the  convergence  is  faster  and  also  the  number  of  operations  in  each

iteration step is smaller, because we can use something like a recursive relation for tri

diagonal matrices here. A conjugacy of auxiliary vector P p i transpose A p j is equal to 0

is illustrated we will quickly see what is an auxiliary vector.

So, tri diagonal matrix T m can be decomposed as a lower and upper triangular matrix

and the V m U m inverse this becomes an orthogonal this becomes the auxiliary matrix

auxiliary vector matrix P m. And all the columns of P are mutually A conjugate to each

other that is p i transpose A p j is equal to 0 if I not is equal to j. So, we can get P m

transpose AP m is equal to U m inverse transpose L m and we can show that this is a

diagonal  matrix  and that  is  called  the  A conjugacy  of  the  auxiliary  vectors.  This  is

however, this A conjugacy arises only when A is A is a symmetric matrix asymmetric

only for asymmetric matrices.



(Refer Slide Time: 07:39)

So, with all its advantages conjugate gradient is only applicable for symmetric matrices

and the computational steps are reduced using recursive relations for r and p for residual

as  well  as  for  the auxiliary  vector  we can use the  recursive relations.  So,  it  is  only

applicable  for  symmetric  a  matrices;  and  the  question  is  that  can  there  be  similar

methods for non-symmetric matrices also.

And for that we explore the other variants of Krylov subspace method in which we can

some way handle the asymmetric method. And one idea is that that if we have a in the

space we use the Krylov space of a for K m, can you use the Krylov space of A transpose

as a L m so, that a plus A transpose is a symmetric matrix. So, that the asymmetricity of a

is some way taken care of by the asymmetricity of A transpose a plus A transpose a

symmetric matrix. So, can we can we pose it like the a problem like this and we will we

will explore it.



(Refer Slide Time: 08:33)

Lanczos by orthogonalization exactly looks into the Krylov space to Krylov subspaces;

one Krylov subspace of one is of A another is of A transpose. So, it builds a pair of

biorthogonal basis using the two Krylov subspaces came A v 1 which is span of v 1 A v 1

A square v 1 a to the power m minus 1, v 1 and K m of A transpose w 1 which is span of

w 1 A transpose w 1 is square w 1 to a A transpose m minus 1 w 1.

Now, if by Lanczos biorthogonalization method, we get bases of k and K m a v 1 and K

m A transpose v 1 Krylov subspace of a and A transpose and these bases are biorthogonal

to each other. In that that is a sense that we take one basis of this v v i and we take one

bases of this w w; v i transpose w will be 0 if v i or w j v i transpose w j will be 0 if i is

not equal to 0. So, one v is conjugate to all other ws except that particular element of w

all vector of w all other ws; there is a biconjugacy between v and w. 



(Refer Slide Time: 09:51)

And there  is  an  algorithm for  that  by which  we can get  it  which is  called  Lanczos

biorthogonalization algorithm it initially starts with any guess vectors v 1 and w 1 with

their dot product being 1. So, their orthonormal in that sense the dot product is normal.

And sets beta one is equal to delta 1 is equal to 0 and w 0 is equal to v 0 is equal to 0.

And then uses something like a recursive relationship for v j plus 1 and w j plus 1 and

gets the delta j plus 1 which is a dot product between v j plus 1 and w j plus 1 root of

that, and then divides then beta j plus 1 which is this dot product divided by delta j plus 1

and divide w by that beta and v by delta and if delta is equal to 0 this j plus this stop. So,

if the dot product between v and w is 0 this algorithm stops.

So, it starts with one take one particular v 1 w 1 and for next v is obtained as v is equal to

A v minus alpha into v alpha is A v dot w minus beta into v j minus 1. So, from v the a a

certain amount of j minus 1 of v is v j is subtracted as well as alpha j v j is subtracted

where v alpha j comes by dot product of v j and w j and the similarly w j plus 1 comes.

So, through this method it is seen that v j and w j are biorthogonal to each other which is

v j and w j are bi orthonormals bases of Krylov subspace A and A transpose. So, v j

transposed v j dot w j 1 is equal to 1, and v j dot w v j dot w j is equal to one, but v j dot

w i is 0 if I is not equal to 0.



That is the property of biorthogonality or we can write v i transpose w j is equal to one if

i is equal to j is equal to 0 if I is not is equal to j and that is hence ascertained by this

particular algorithm.

(Refer Slide Time: 12:14)

And the process breaks down once we get the product between v and w for the particular

j to be 0 that means, there is no further independent basis of the Krylov subspaces which

can be generated all the independent bases vector all the independent vectors have been

found out or we have been we have calculated the entire bases of these two spaces A and

A transpose. This took the Krylov spaces of A and A transpose.



(Refer Slide Time: 12:45)

Lanczos biorthogonalization is follows this proposition if Lanczos bi biorthogonalization

algorithm for a non symmetric matrix A does not break down before the step m that; that

means, before the step m V m transpose v i transpose w i is non-zero. Then for vectors

the vectors v i, i is equal to 1 to m and w j j is equal to 1 to m form a biorthonormal

system, that is v i transpose w j is equal to 1 if i is equal to j and otherwise it is 0, and

this is ascertained by the way the Lanczos algorithm has been devised.

So, it is the algorithm is for finding out basis of A transpose v and A transpose w and

Krylov subspace between A transpose and w and a and v and there are these Krylov

subspaces are can have any bases any m bases, but the basis our vectors are found using

Lanczos by orthogonalization algorithm in a way that, v i transpose w j is equal to 1 or 0

if i is equal to j they are 1 otherwise there is 0 and v and w are biorthonormal bases of

this two kyrlov subspaces. This looks little abstract, but we will see that this is a great

utility when you will try to define derive an algorithm from here.

Moreover v i i is equal to 1 to m is a bases of K m A v plus 1 Krylov subspace of a and v

1 and w j  j is  equal to one to m is  the bases of K m A transpose and w 1 and the

following relations hold that A V m is equal to V m T m delta m plus 1 delta is defined to

Lanczos algorithm biorthogonalization algorithm v m plus e m transpose e m is the first

unique vector.



A transpose w m is w m T m transpose beta m w m plus 1 e m transpose T m is a tri

diagonal matrix. So, its transpose is also a triangular matrix with that now the T m is

defined such that W m transpose AV m is equal to T m. W m is the matrix containing as

its columns all the vectors which are bases of the Krylov subspace of A transpose all the

ws.

Similarly, V m is the matrix which contains all the bases of Krylov subspace of a all the v

s. And W m transpose A V m is a tri diagonal matrix and this is also this is also a very

evidently very easily a apparent because w and v are biorthonrmal w m transpose V m

must be a W m transpose A V m must be a tridiagonal matrix. So, T m is a tri diagonal

matrix.

(Refer Slide Time: 15:49)

Two sided Lanczos algorithm is found is a device for linear systems or for solving A x is

equal to b compute r naught b minus A x 0 and beta is equal to l 2 norm of r naught. Run

m steps of non symmetric Lanczos algorithm start with v 1 is equal to r 0 by beta and any

beta.  So,  that  v  1  dot  w  1  is  equal  to  0.  Generate  Lanczos  vectors  using  Lanczos

algorithm v v i n w i find the tri diagonal matrix T m and then compute y m is equal to T

m inverse beta e 1. So, T m is the again the same as the Heisenberg matrix upper part of

the Heisenberg matrix which is a tri diagonal matrix we found out in full orthogonal

method.



So, similarly you write T m is equal to W m transpose A V m and compute y m is equal

to T m inverse beta e 1 and x m is equal to x 0 plus V m y m. Now if we can remember

that h m the relationship for full orthogonal method was Y m is equal to H m inverse beta

e 1 and this and in Lanczos say D -Lanczos source or Lanczos for linear systems will say

that Y m is equal to T m inverse beta e 1 because H m and T m H m is T a min Lanczos

method. The Heisenberg upper part of the Heisenberg matrix is same as that as as is a tri

diagonal matrix here how was full orthogonal method coming? It was appearing due to

the fact that our K m and L m are same.

Here  we  are  getting  a  different  tridiagonal  matrix,  but  we  are  getting  a  similar

relationship due to the fact and here T m was if we look into the conjugate gradient

method, T m was defined in a different way. But, it was coming from the fact that l K m

the Krylov subspace vectors or T m was defined in FOM or in rather not I will write

Lanczos, the Lanczos for symmetric matrix T m was defined as V m transpose A V m

and this is because V m was orthogonal to the residual vectors. V m is where they x is

updated  V m is  also  the  subspace  V m is  also  the  bases  of  the  L m,  V m is  also

orthogonal to the residual vector.

Here instead we get a w m transpose.  So, w m transpose must be orthogonal to the

residual vector here; or what we can say or w m must be orthogonal to residue vector

here or what we should see say is that that the Krylov subspace of a m transpose r 0 will

be the a L m for Lanczos biorthogonalization methods or a variant of that. We will look it

into a little more elaborative way.



(Refer Slide Time: 19:10)

That recall biconjugate gradient algorithm for non symmetric matrices. Let us recall the

derivation of conjugate gradient algorithm for Lanczos method. If it decomposed the tri

diagonal matrix into upper and lower triangular matrices then defines an auxiliary vector

p. So, tri diagonal matrix is decomposed in L m u m or then auxiliary vector p is defined,

and a recursive relation is established for the residue vector r j plus 1.

This is based on the direct solution of tri diagonal matrix system Y m is equal to T m

inverse  beta  e  1  using something like  a  TDMA type  of  algorithm which  is  a  direct

algorithm. This is further used a conjugacy of orthogonal auxiliary vector p transpose A p

is equal to an identity vector if i is not is equal to j p i transpose a p j is equal to 0.

In similar way we will try to now we will now try to develop a bi conjugate gradient

algorithm from Lanczos biorthogonal  narration.  The idea is that y m is calculated in

similar  way  and  there  is  an  e  conjugacy  now there  is  a  conjugacy  here  there  were

conjugacy between the bases vectors of v v i transpose v j is equal to 0 if i is not equal to

j. Here there is a conjugation between w and v, we will utilize these facts.



(Refer Slide Time: 20:37)

The biconjugated gradient algorithm is a projection process on to the Krylov subspace K

m which is a span of v 1, A v 1, A square v 1, A to the power m minus 1 v 1 and it starts

with v 1 is the initial residual vector b minus r a a x zeros unit vector on that. Orthogonal

to thus (Refer Time: 20:59) the residue vector must be orthogonal to L m which is span

of w 1 A transpose w 1 A transpose square w 1 A transpose m minus 1 w 1.

So, now L m is span of Krylov subspace of A transpose and that is a way we are taking

any general  matrix which is  non symmetric  matrix,  and trying to build an algorithm

which was earlier built for a symmetric matrix. For conjugate gradient L m was Krylov

subspace of a only, but for biconjugate gradient we will see for non symmetric matrix.

So,  similar  algorithm  will  come  keeping  in  mind  that  L  m is  now  not  the  Krylov

subspace of a m a rather it is the Krylov subspace of A transpose.

So, we will start with as usual v is equal to r 0 by mod r 0, and that is the unit vector

along the first residue direction and take a w such that v 1 transpose w 1 is non-zero. As

their orthonormal usually take w is equal to v. The method is equivalent to solving a dual

system A transpose x star is equal to b star along with a x is equal to b. And to solve with

a A transpose in that case w 1 is a obtained by scaling the initial residual b star minus A

transpose x 0 star.

Instead of if  we actually  have to solve the dual  system, we are not solving the dual

system, but in the back of this processes this dual system is also being solved. Krylov



subspace of a is my K m space here Krylov sub space of A transpose is the L m here. If I

take another equation A transpose x is equal to some b star A transpose x star is equal to

b star the element K m is just reversed.

So, if I can solve one equation it is identical of solving the other equation also, which is

equation for the transpose of a matrix.  If we as we can solve that both the equations

together, but you we, but as the given problem is a x is equal to b for us we do not solve

the transpose equation, which is type of solved in the back of the algorithm.

But if we actually have to solve the transpose equation also, able to solve a dual problem

a x is equal to b and A transpose x is equal to b star A transpose x star is equal to b star.

We have to start with w is equal to b star minus A transpose a x zeros. However, as we

are not solving here, it is well we can take any w 1 to start with usually it is chosen as v

1. However the dual system is not solved explicitly.

(Refer Slide Time: 23:42)

So, for the derivation we start with the LU decomposition of the tri diagonal matrix into

lower triangular and upper triangular matrix T m is equal to L m U m. We define an

auxiliary matrix P m as P m is equal to V m U m inverse. It is very same as it we have

defined it in the conjugate gradient case. The solution is expressed as x m is equal to x 0

plus V m T m inverse beta e 1; now T m inverse is u m inverse L m inverse and V m u m

inverse is P m. So, x 0 plus P m L m inverse beta u 1 so, this is inversion of a lower

triangular matrix multiplied by a and auxiliary vector matrix P.



(Refer Slide Time: 24:30)

X m is equal to x 0 plus P m L m inverse beta e 1 which is the this one. This update is

very similar as conjugate gradient update. Like conjugate gradient algorithm the vector r

j and r j star are in same direction of v j minus 1 plus 1 and w j plus 1 right. Because the

residue vector is orthogonal to w and what is orthogonal to w? Is v. So, residue vector is

along v j plus 1 r j is orthogonal to w j plus 1. So, it should be along v j plus 1 r j star

similarly will be along w j plus 1.

So, as v j v i n w are biorthogonal for I is less than m, hence r j r j star should also form a

bi orthogonal system. Similarly we can define a matrix P star which is W m U m inverse.

P was defined as P m was defined as V m U m inverse. So, the star matrix that is the

matrix for the transfer transpose equation part P m star is W m U m inverse. And very

interestingly we can show that P m star AP m is L m inverse W m AV m U m inverse and

W m A V m W m AV m this is nothing, but the tri diagonal matrix T m.

So, L m inverse T m U m inverse of a lower triangular matrix with a tri diagonal matrix

and inverse of the upper triangular matrix and now we can we all we have also seen that

T m is equal to L m U m T m is decomposed as L m U m. So, you multiply this we will

get the identity matrix. So, P m star and P m the auxiliary vector matrix for A and for A

transpose are a conjugate. Earlier for conjugate gradient we have seen that P m is itself a

conjugate, but here we are getting P m star and P m there a conjugate.



So, we got biconjugacy a (Refer Time: 26:41) a by conjugacy biconjugacy of r j and r j

star residue vectors and we got by a conjugacy of auxiliary filters. Now the problem is

exactly same as conjugate gradient method we can use similar type of iterate recursive

relations and form the algorithm.

(Refer Slide Time: 27:03)

So, auxiliary vectors are biorthogonal as CG like algorithm hence can be designed.

(Refer Slide Time: 27:08)

And we get the biconjugate algorithm biconjugate gradient algorithm the initial residual

vector r 0 is equal to b minus x 0 we choose r 0 star, such that the dot product for the



initial vector r 0 and r 0 star is non zero. Then p 0 is equal to r 0 p 0 star is equal to r

zero. So, r 0 and r 0 star are non 0 dot product, but r 0 and r one star will be 0 that that is

the idea by conjugacy. So, j is equal to 0 or two convergence find alpha j which is r j

transpose r j start by A p transpose p star these are biorthogonal and these are biconjugate

update x j plus 1 as x j plus alpha j p j r j plus 1 as r j minus alpha j a p j r j plus 1 star is

equal to r j star minus alpha j A transpose p j star get beta i beta j and get p j plus 1 using

beta j and p j star plus 1 p star j plus 1 using beta j and r j plus 1.

So, similar recursive relations as conjugate gradient, but now it is for both r star and r p

and p star. But for x we have only finding out x j plus 1 because we not interested in

finding the solution of the transpose equation you are not finding out x extra j plus 1; and

after certain iterations it should converge and we get the converse solution.

The algorithm works for any nonsingular matrix a and the convergence etcetera can be

shown as same as the conjugate gradient type of algorithm which; that means, these are

first converging algorithms. If the dual system A transpose is being solved, then in the

line 1 r 0 star should be defined as r 0 star is equal to b star minus A transpose x star and

then x j star plus x j plus 1 star has to be updated from x j star for dual approximate

solution after the line 5.

The vectors produced by this algorithm satisfy about five orthogonality properties like r j

star r r j dot r i star is equal to 0 if i is not is equal to 0 A p j dot p p i star is equal to 0 if i

is not equal to 0, this these are the base of those are proposition based on which this if

this method is developed actually. The recursive relations come and then using this we

can update the vectors these vectors the updated vectors also must satisfy this particular

properties.
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Now, there  is  a  particular  issue  with  biconjugate  gradient  algorithm,  which  we will

discuss before we finish this lecture and we look into how to solve this  issue in the

subsequent lectures.  That  is if  we look into the BiCG algorithm, that  there are three

matrix  vector  multiplication.  If  the first  one is  before the initial  step,  but during the

iterations also there are two matrix vector multiplication Ax 0 is the first one, A p j is one

multiplication and then A p j is again used another matrix vector multiplication. On top

of that there is one more matrix vector multiplication with A transpose p j and transpose

multiplications  are  difficult  in  terms  of  communicating  with  the  memory  and  the

processor.

So, number of at least A transpose p j a p j three matrix vector multiplication then p j is to

be multiplied with p star, the number of calculations operational steps are usually more

and multiplication with the auxiliary vector and a is  also more and we have to also

multiply with the transpose vector. And for that the as the number of operational steps

are more the in during each iteration, the number of the amount of round off error is also

more. And due to this round of error in the convergence of this BiCG or biconjugate

gradient method we see there are irregularity.

It  does not converge in a smooth way or monotonically there are fluctuations during

convergence  and  sometimes  these  fluctuations  can  be  large  enough.  So,  that  the

convergence  is  disturbed  for  certain  case  of  the  problems  they  therefore,  small



perturbations we can see lot of change in the result due to this round off error related

fluctuations.

So, to look into more stabilized versions of BiCG method, where this many matrix vector

multiplications can be avoided and BiCG stabilized method is one of that method which

we will discuss now in that the subsequent classes. And there are few other methods

using  some  polynomial  formulation  of  the  auxiliary  vector  and  residual  vector

polynomial expansion type of formulation of the auxiliary vector we can minimize the

matrix vector products, and can get good recursive relations and much simple operations

for in during each iteration and better algorithms can be devised.

In the next classes we will look into the much developed algorithms. Keeping in mind

that  BiCG is  the basic  algorithm for any non symmetric  matrix,  which will  be now

developed using certain polynomial expansions to BiCG stabilized type of algorithms.

We will look into it in the next lesson.

Thank you.


