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Welcome we are continuing our discussion on Generalized Minimum Residual Method;

which is one of the Krylov subspace methods as we discussed which is applicable for

any nonsingular matrix.

Earlier we have discussed a number of Krylov subspace methods and one of them which

is a very first method called conjugate gradient; we have seen that it is only applicable

for symmetric positive definite matrices. Now, we are trying to look into methods which

are fast as well as applicable for any type of matrices not specific to symmetric matrix or

not specific to diagonal dominant matrix like that.

So this is generalized minimum residual method which we said is applicable for any

matrix  and  is  a  first  method.  And  one  important  thing  with  general  Generalized

Minimum Residual Method or GMRES; we popularly call it one important point with

GMRES is that; this is an oblique projection method; that means, the spaces k m and L m

are not same.

So,  let  us start  the discussion on GMRES formulation  which we covered at  the last

session I will quickly recap on the formulation part also before going into algorithm in

this particular session.



(Refer Slide Time: 01:47)

Any vector x in the affine space x 0 plus K m can be written as x is equal to x 0 plus V m

y, where  y is  an m vector;  y  has  m components  a  vector  in  R m and V m are  the

orthonormal basis vectors of Krylov subspace K m.

This is the basic idea of Krylov subspace method and up to this any method any Krylov

subspace method is same with Arnoldis method or with a full orthogonal method that we

generate  the bases vectors;  V m orthogonal orthogonal  bases vectors V m of Krylov

subspace and say that the updated value of x will be the approximated value of x plus

vector in the Krylov subspace or a linear combination of members of V m.

Now, the GMRES statement looks into a functional J y which is L 2 norm of the residual

b minus A x and so, if we start with any general value of x we replace x is equal to x 0

plus V m y; what we obtained here. We can sorry x 0 plus V m y we can substitute it here

and with little further analysis we have seen it in last session that this L 2 norm is same

as beta e 1 minus H m bar y was L 2 norm what H m bar is a Heisenberg matrix that we

obtain from Arnoldis modified Gram Schmidt method and beta is the magnitude of the

initial residual.

So, we can also write that beta is equal to mod of b minus A x 0 or maybe second norm

of that. So, beta e 1 minus H m y. This is a functional J y which is second norm of the L

2 vectors; we get that J y has this particular value. And now the GMRES approximation



tells that there is a unique vector x 0 plus K which will minimize J y and there is the

solution exact solution x.

So, if we can find out a vector x 0 plus K which minimizes J y that will be the solution of

b equation b minus A x. So, my final x will be x 0 plus K which minimizes this now

minimizing J y is equivalent to minimizing this particular function beta e 1 minus H m

bar y is L 2 norm.

So, we have to find out a y which minimizes this particular norm and then we multiply

this y vector with V m y with the basis vectors of Krylov subspace; V m and this x m is

the solution of the equation. So, solution of b minus of A x is equal to b is obtained and

this solution is nothing, but this x m where this particular value of y m which comes

from the  minimization  of  beta  e  1  minus  H m bar  y. That  is  GMRES statement  or

GMRES approximation for solving x is equal to b.

So, one important point is that it is right if we think of conjugate gradient or if we think

of steepest descent method it was minimizing a different functional and that functional

was J x is equal to x transpose A x half of x transpose x A x minus x transpose V.

Here  it  is  and when it  was  minimizing  this  that  functional  it,  we observed that  the

residual  vector  is  orthogonal  to  the  space  L  m  which  is  same  as  K  m.  Here  it  is

minimizing  a  different  functional  therefore,  the  residual  vector  b  minus  A x  is  not

orthogonal to K m rather it is orthogonal to another space L m and if we try to relate it

with  the  discussion  we  had  in  minimum  residual  method  not  generalized  minimum

residual  method  in  one  dimensional  projection  process  when  we  discussed  about

minimum residual method.

We have seen that the space on which residual vector is orthogonal is A V where V is the

space of the in which x is updated. And therefore, here we using the same discussion we

write that L m is equal to A K m where r is equal to b minus A x is orthogonal to L m.

Residual vector is orthogonal to a special m and L m is equal to A K m and what is K m?

K m is the Krylov subspace. And the formulation takes us to the fact that we have to find

out first Krylov subspace bases vectors V m and then we have to find out and y m which

minimizes this function; beta e 1 minus H bar m y and this is equivalent to minimizing



the L 2 norm of the residual. And with this y m we multiply this y m with the bases

vectors V of V and we will get the solution.

So,  essentially  solving  A x  is  equal  to  b  boils  down to  find  minimize  find  out  the

minimizer of b eta E 1 minus H bar m y L 2 term. So, instead of solving A x is equal to b

what we are trying to do? We are trying to find out a minimizer of beta e 1 minus H bar

m y is L 2 norm.

So, now the minimizer is an expensive to compute as it requires a solution of m plus

what  into  m  least  square  problems.  And  m is  typically  smaller  m is  the  maximum

dimension of Krylov subspace or the dimension of Krylov subspace up to which the

solutions converge and it is seeing the name is typically smaller than the actual matrix

size.

So, it is solving a smaller number of least squared equations than the actual number of

equation and therefore, the solutions become faster.

(Refer Slide Time: 08:38)

If we look into the algorithm quickly; the GMRES algorithm it, so what again if we go

back once before coming into the algorithm sorry; for that that what does it mean need?

It needs computing of V m and it needs computing of y m.



V m is computed exactly same as V m at the V; V m are the members of the Krylov

subspace bases of the Krylov subspace. So, V m is computed exactly same in similar

way as we have done in full orthogonal method or Arnoldi modified Gram Schmidt.

And once we compute  V m then there  is  a  mixed rather  smaller  tape  step which is

computing the minimizer of beta e 1 minus H bar m y. So, if we look into the algorithm

the first part it starts with an initial guess value x 0 and computes the initial residual finds

out the value of beta; which is magnitude of the initial residual vector.

And then the later steps is right you start you take v 1 as the unit vector along r 0 or the

initial residual. And then take multiply this with A and subtract which is a new bases for

of Krylov subspace.

But as you want to find that orthogonal bases vector you take the new bases and consider

the old bases which is v 1 and take their dot products, subtract the dot product multiply

with the old bases from the new bases.  So, you get a new orthogonal bases and get

orthogonal bases vectors and in that way you also calculate the Heisenberg matrix and do

till the Heisenberg matrix gives a j plus 1 jth term 0.

That  means  all  the  independent  vectors  in  Krylov  subspace  all  the  independent

orthogonal  vectors  for  Krylov subspace  are  found out  or  the  entire  bases  of  Krylov

subspace  is  found  out  do  up  to  this  part  of  m.  And  this  part  is  very  same  as  full

orthogonal method or it uses Arnoldi modified Gram Schmidt; to compute V m and V m

V m are basis of K m.

K m is same for all the cases it is the Krylov subspace which is same for any of the

Krylov  subspace  that  full  orthogonal  method  arnoldi  c  g  K  must  be  same.  So,  this

computation computation of V m is exactly same as other Krylov subspace (Refer Time:

11:48) methods.

And  once  you  have  finish  this  part  then  this  is  what  is  specific  in  GMRES  is  the

minimizer of beta e 1 minus H bar m 2. So, here you are actually finding out minimizer

of r minus b minus A x L 2 norm; this is a new part in GMRES.

And once you find this minimize that because there is a smaller matrix; the solving least

squared equation is like solving normal equation which is much simpler than solving the



large A x is equal to V. When you find do this; so, if found all the m’s and then you in

that process you have generated the Heisenberg matrix elements; these elements will go

for the Heisenberg matrix H m by H bar m.

And you find out find out  the minimizer  and this  is  the GMRES algorithm.  So, the

algorithm has  couple of  parts  the first  part  is  find out  V m same as  full  orthogonal

method in that part you also compute H bar m or the Heisenberg matrix. And once you

have the Heisenberg matrix you find out the minimizer of beta e 1 minus H bar m y; and

now go ahead with that y; y m is the minimizer multiply this with V m and we take 0.

So, you find out y m here and then this y m you take here; similarly you have found out

V m here and this V m is put here and that that and the H m you found out here this H m

is used in this particular step and that gives you the GMRES solution.

So,  instead  of  solving  an  equation  large  equation  system we  are  trying  to  find  out

minimizer of smaller number of equation of a smaller functional; we are trying to find

out small number of equations least square equations.

(Refer Slide Time: 14:04)

However there are few implementation issues; first is that that in GMRES it does not

provide the approximate solution x m at each step rather because x m is found out when

you have found out y m which minimizes the function.



So, we like an iterative method where we are every time looking into the solution and

checking whether the solution is satisfying the actual equation; here we are not finding

out x m explicitly till we find out the right y m which minimizes j. So, there is a issue of

convergence because the numerical solution you find out is never the very exact solution;

there  are  round of  errors or  numerical  errors each in  iterative  method the numerical

solution converges to the right solution.

So, what should be the convergence criteria? Convergence criteria is something that the

error is of the order of round off error, error is very small. The now if we do not find out

x m at each step it is find out difficult to find out the error. So, there is a problem here

because we are using an iterative method, but through that iterative method we are not

finding out the solution; rather we are you doing an iteration for finding out minimum

value of a particular function.

So, when should we stop? That is difficult to may make a call because again like if we

know x m we can see that how x m is different than x m minus 1 and if the values are

small we will say that it has converged and I will stop, but if we do not know x m we are

looking only into y m. So, based on what value of y m can we stop and this is a little

involved question.

However, there are simpler solution like check the residual with the y m you find out

what is the value of b minus A x m or what is the value of beta e minus H bar m y

though; it is the minimum value what is the value. If the value is not changing much; that

means, you have already close to the minimal value or if you see residual r 0; if this is

very small then you can also say that b minus A x is almost 0; so, we can stop that is that

can be 1 remedy.

However there can be another solution in the way we propose the least  find out the

equation of least square solution; we will discuss it later that instead of looking into the

value of residual at each step; we can probably directly find out where to stop. The other

thing is that when we are solving this least square equation m plus 1 into m equation of a

Heisenberg matrix H bar m is an Heisenberg matrix.

So,  instead  if  we  can  go  on  transform  the  Heisenberg  matrix  to  a  triangular  form

Heisenberg matrix is that a triangular  matrix  plus 1 row below the diagonal one sub

diagonal row. Now if we can transform the Heisenberg matrix to triangular form it is



much simpler  to find out  the solution of least  squared equations.  And conversion of

matrix  is  possible  through  plane  rotations;  so,  we  will  apply  a  transformation;  a

rotational transformation on the Heisenberg matrix and convert it to a triangular matrix,

upper triangular matrix.

And we will see that the issue of finding out minima of beta e minus H bar m y will be

much  simple.  Because  although  it  is  a  less  smaller  number  of  equations  which  are

solving in least square equations still we are solving a kind of a matrix equation kind of a

transpose A x is equal to x transpose b things like that.

So, A is A transpose A x is equal to A transpose b a equation like that which is a least

square equation. So, there are some computational cost involved here, but now if we can

make it much simpler or by you doing some transformation on the Heisenberg matrix;

so, that  we come up with a upper triangular  matrix  the computations will  be further

simpler.

And these also will tell us give us a very good nice way to decide that what is the value

of x m directly so that we can stop the calculations once x m has converged to the right

solution.

(Refer Slide Time: 18:34)

A common technique to solve least square problem is to convert the Heisenberg matrix

into upper triangular form and that is done by a rotation.



So, here a rotation matrix chemical omega i is defined as it is a diagonal matrix with only

a block of c i s i minus s i c i which are the cosine and sine of the angles which are

calculated based on the i plus 1th ith term of; Heisenberg matrix. If we are looking into

the ith row only you or if we are trying to take the sub diagonal term from the ith row

only; we will look into these values the Heisenberg matrix i plus 1 ith term and of the

like this can come after several transformation.

So, what is the value of the diagonal term of ith row after the transformation based on

which we can calculate s and c; which is basically c is equal to cos theta, s is equal to

sine theta; for plane rotation plane rotational transformation and therefore, c square plus

s square is equal to 1.

So, if m steps are performed; then sigma will if there the H bar m has m m plus 1 into m

plus 1 dimension sigma m; i will also m plus 1 into m plus 1 dimension. So, how does it

work we will see on a 5 take a 5 by 5 Heisenberg matrix and look into the example.

(Refer Slide Time: 20:23)

This is an example which is directly copied from (Refer Time: 20:22) book. So, we will

see how this matrix can help us in finding out the triangular form.



(Refer Slide Time: 20:27)

For example we take a Heisenberg matrix which has basically 6 rows and the last term is

h  65 and,  but  this  is  m plus  1 into  m plus  1.  So,  m is  equal  to  5 we take  this  as

Heisenberg matrix for m is equal to 5. And the corresponding beta g matrix which is beta

as the first component and remaining 0 is there. So, we are solving basically beta e 1

minus.

So, g 0 is this is this is basically beta E 1 beta e 1 minus we are trying to find out the

minimal of beta e 1 minus H bar m y. So, if I because I am I have to find out minimum of

beta e 1 minus H bar m y. If I do a transformation on H bar m or if I multiply H bar m

with sigma i; I should multiply H bar m with c beta with also with sigma i; so, that it

carries the meaning.

So,  entire  thing  is  being  multiplied  by  the  same  vector.  So,  now  sigma  1  the  pre

multiplier we for first row is c 1 minus s 1; s 1 c 1 and this will our target is to give a

triangular form here. So, triangular form will be a form like this. So, we have to keep on

eliminating these vectors.

So, by multiplying with sigma 1 our goal is that H 2 one will be eliminated from H bar 5.

And of course, g z g bar 0 after this multiplication will not be beta e 1 rather; it will

change from E 1 something else will come here. So, this is the pre multiplier matrix and

the according to the formula given in that slide.



(Refer Slide Time: 22:27)

So, when we multiply omega 1 with H bar 5 h 21 is related. So, this term is related and

there is a minus s 1 beta which comes here. Now we calculate s 2 c 2 and s 2 to take

away h 32 term and when we multiply this the this like from here; we can see the 3 2

term this has been cancelled out. And this there are further more components in g by 5 g

5.

So, once we do these multiplications with h 2 h 3 like we take H bar 1, H bar 5 and then

multiply omega 1 into omega 2 into omega 3 into omega 4 into omega 5. So, with each

multiplication with multiplication with omega 1; we cancel out this with omega 2 cancel

out this omega 3 cancel out, this omega 4 you cancel out this omega 5 you cancel out

this.

So, finally, we end up in a upper triangular matrix and the g bar 1 is g, g 1 or the g matrix

is converted into a 6 all the terms are populated instead of 0. So, it is a 6 nonzero terms

in general  (Refer Time:  23:58).  So,  through a plane rotation we can take any H bar

matrix of Heisenberg matrix and convert it to a upper triangular form with the last row

having 0 on the.



(Refer Slide Time: 24:18)

The product of the matrices omega i is known as Q m omega m omega minus 1 to omega

1. Q m when operated over vector beta 1 and matrix H bar m gives the following; R m

bar is the upper triangular form with the lower row everything 0 is H m bar H m Q m H

bar m. g m bar is Q m beta e 1 gamma 1 to gamma n plus 1.

The R m is the upper triangular matrix obtained from R m bar by deleting the last row;

since the last row is 0. So, if we look into the sorry.

(Refer Slide Time: 25:08)



See if we look into the last row of this is the 6 by 5 matrix, but the last row this is

completely 0 in. So, this will give me and 5 by 5 upper triangular form if I delete the last

row; that is exactly what we are doing here.

So, R m is the upper triangular matrix obtained from R m bar by deleting the last row;

since the last row is zero similarly g m is the mth order vector deleting the last row of g

m bar.

(Refer Slide Time: 25:42)

Now, beta e 1 minus H bar m y is equal to Q m beta e 1 minus H bar m y. Now as Q m is

a unitary matrix multiplying with Q m will not change the norm will not change their

length because it is called Q m is product of cos theta sine theta.

So, Q m has a norm of 1. So, beta e 1 can be seen as Q m into beta e 1 minus H bar ms L

2 norm is Q m into beta e 1 minus H bar ms L 2 norm; this is g m bar minus R bar m y L

2 norm; R bar m has the last row 0. So, we can write g m minus R m y is L 2 norm plus

the last component of g m which is gamma m plus 1.

Now, we are trying to find out minimum of this function we are trying to find out its

minima or minima of this particular function. And this is a function of y a plus b; b is a

function of y; we can change with why when a plus b can be minimum? If b is a is fixed

b is a variable if b is 0 a plus b is minimum. So, this function can have a minima; when g



m minus r r bar m cell 2 norm is 0 the minima is this is the minima of the summation

right.

So, the variable part is 0 and the (Refer Time: 27:10) constant part is still  there. So,

gamma m plus 1 square is a minimal value of this particular functional and so, plane

rotation it comes out very easily. And now more interestingly when for which y this is

minima? The y for which g m minus R m y is L 2 norm is 0.

So, now we are in a matrix equation actually this should be a 0 matrix and R m is a upper

triangular matrix. R m is an upper triangular matrix; so the matrix equation is you only

need n steps to  solve the matrix  equation.  So, this  will  give you only need m steps

exactly; m steps to find out the value of y which will give the minimum value of this

function.

So, the minima will be obtained when the second term of the above expression is 0.

Therefore, least square problem is can be is converted into a m plus m into m matrix

solver with R m y is equal to g m and R m is upper triangular. So, we only need the

backward; so, if a Gauss elimination method to solve this equation.

(Refer Slide Time: 28:32)

So, beta e 1 minus H bar m square with a y m is equal to r r inverse m j m; this is what

we are trying to find out. This minimize gamma m gamma m m plus once L 2 norm L 2

norm of this and when y m is R m inverse j m.



So, this will lead to a residual value b R m is equal to b minus x m is equal to V m plus 1

Q m transpose and this is the minimum value V m plus 1 Q m transpose gamma m plus 1

e m. Why Q m transpose? Because this is when calculating gamma m we have multiplied

Q m with the beta vector and the solution will be updated as x 0 is equal to x m plus V m

y m.

Hence V m where V m are orthonormal to bases of Krylov subspace obtained using

Arnoldis method. And this process must be stopped when the residual is small and when

the residual is small means finally, this is gamma m plus 1 L 2 norm that is the residual

when this value is small enough; this process should be stopped.

And solving as R m is upper triangular; R m y m is equal to g m needs R m also it has a

dimension m into m; m steps only. So, now, the GMRES algorithm can be solved in m

number of in order of m number of steps.

So,  if  we take a  large matrix  and we find out  the basis  vectors  of  Krylov subspace

converging base in which the solution and solution will  converge when gamma m is

smaller enough. So, that gamma m plus 1 that is the value m; when gamma m plus 1 is

smaller (Refer Time: 30:47) of the solution in convergent that we will need only m steps.

So, it becomes a much faster method and we.

(Refer Slide Time: 31:01)



So,; so you also got a parameter to stop here and that is when this value gamma m plus 1;

when this value is small solutions this will implies their solutions converged. So, we will

quickly look into the convergence criteria of GMRES method.

(Refer Slide Time: 31:38)

And n into n matrix GMRES converge at most in n steps m cannot be more than n and n

n steps it must converge.

Assume that A is diagonalizable matrix and let X is equal A is equal to X omega X in X

lambda X inverse where lambda is the eigen value matrix all the diagonals of lambda has

different eigen values of A. And epsilon to the power m is defined as a polynomial of

lambda with different values of lambda, lambda 1 and maximum of that for the degree of

polynomial will depend on for which this value is minimum.

Then the residual norm achieved by mth step of GMRES satisfies that r m 2 residual

norm at mth step is less than the condition number of the eigenvector matrix  X into

epsilon m r 0 to the power 2. And therefore, the L 2 norm of r 0 is always greater than the

L 2 norm of the r m um. So, it should converge for any r 0 and the convergence rate

hence depends on the eigen value lambda of A; eigen value of A and condition number of

the eigen vectors.

So,  the  method  converges  for  any  guess  value  x  0;  convergence  rate  depends  on

condition value of the eigen vector matrix;  not the not on the condition value of the



matrix rather condition number of the matrix rather condition number of the eigenvector

matrix and eigenvalues of A also.

So, this is a very important method because this is applicable for any general type of

matrices.  Now  though  this  is  an  important  method  this  is  a  first  method  the  in

implementation wise; it might be little complex if we compare with conjugate gradient

where; if we look into the programming we will look soon the programming in conjugate

gradient is much simple then the programming efforts from GMRES.

Now we will next few classes, we will explore that if conjugate gradient type of methods

can be extended for non symmetric  matrices.  And we will  get a algorithm called by

conjugate gradient method in the subsequent classes we will discuss on that.

Thank you.


