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Hi,  we  are  looking  into  Conjugate  Gradient  Algorithm  which  is  a  class  of  Krylov

subspace methods for symmetric a matrix. So, when you are solving x is equal to b using

Krylov subspace based iterative methods if the matrix a is symmetric we have observed

that few interesting properties come out. One is that the new residual vector is along that

the  present  residual  vector  is  along the  next  steps  next  basis  of  Krylov subspace  at

particular m level or residual vectors or orthogonal to each other. And also we have seen

that the auxiliary vector p m has an a called p i has an a conjugacy that is p i dot a p j is

equal to 0 if p i is not is equal to p j.

Utilizing this facts we have found out how alpha x and x r and p should be updated. And

what should be the values of the updates.
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So,  we summarize  what  we have  found out  the  crux  of  that  alpha  and  beta  at  any

iteration  stage  or  for  any  particular  when  you  are  going  in  Krylov  subspace  any

particular basis of the Krylov subspace, we can write alpha and beta is r j dot alpha is r j

dot r j divided by A p j dot r j and beta is r j plus 1 dot r j plus 1 divided by r j dot r j.



And r j is the residual and p is the auxiliary vector and x can be updated as the x j plus 1

is x j plus alpha j p j r j plus 1, r will be a residual will be updated as r j minus alpha j A p

j p j plus 1 is equal to r j plus 1 beta j p j.

So, if we translate it is this into an algorithm all are basically vector operations vector

vector products etcetera except we have to find out this A p matrix vector product which

are used at couple of stages here. So, what you can do? You should start with a guess x 0

which will give us the initial guess r 0 which initial residual r 0 x 0 minus b and said the

initial of auxiliary vector is same as the initial residual vector p 0 is equal to r 0 and then

we will update everything update obtain alpha and update x and r which are updated

based on alpha and then update beta. Once r is updated we get r j plus 1 we can calculate

beta obtain b using the updated r and this is the updated r this is the updated r use the

updated r to obtain b. And update p based on that.

So, start with 0 m is equal to 0, you obtain alpha 1 of t and if this is x 0 you have p 0 and

r 0 everything there. So, with alpha 1 you find out x 1 is equal to x 0 plus alpha with

alpha 0 rather plus alpha 0 p 0 and r 1 is equal to r 0 minus alpha 0 A p 0.

Once you found r 1, r 1 dot r 1 divided by r 0 dot r 0 you find out beta; p 1 is equal to r 1

plus beta 0 p 0 update p and then go to j is equal to 2 3 4 up to m update p and iterate for

convergence. Convergence means, what should be the convergence criteria? That is what

we have the idea we got from the basic iterative methods. That mod of x j plus 1 minus x

j is less than some small number epsilon; say epsilon 1 or the residual r j plus 1 must tend

to 0, r is equal to b minus x. Once we have solved the equation r must go to 0 or we can

also check whether r j plus 1 is less than a small number epsilon another small number

epsilon.

We can fit a convergence criterion based on the difference of last 2 guess values or based

on the absolute value of the or norm of the residual vector r. If the residual vector is very

small it should go to we will say that it has been converged and converge in that way. So,

we are  basically  what  we doing?  We are basically  finding out  different  basis  of  the

Krylov subspace A r 0 r 0 a square r 0 this and along each basis we are updating x. So, p

is because we are updating along x along p, p becomes essentially the basis of Krylov

subspace.



These are orthonormal to each other also. So, p becomes basically the normal basis of

Krylov subspace we can orthonormalize it easily.

So, the instead of finding out the orthonormal basis v 1 v 2 v n, we will looking into the

auxiliary vector p 1 p 2 p n and they become the basis now and we can say that p 0 is

equal to r 0. So, r 0 is one of the vectors which will spend the Krylov subspace and how r

1 r 2 r n we see that we will finally, with this p we are spending the Krylov subspace.

So, increasing number of m we are approaching the right solution. So, that the residual r

m goes to 0. So, now, if we look into the algorithm in a more formal form.
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Compute r  0 is  b minus A x 0 and p 0 is  equal  to r  0.  For j  is  equal  to 0,  1 until

convergence  that  means,  residual  is.  So,  let  us write  down convergence  we will  can

probably be checked here that mod r j plus 1 is less than epsilon you check it. Obtain

alpha j is r j dot r j by A p j dot p j x j plus 1 is equal to x j plus alpha j p j; r j plus 1 is r j

minus A alpha j A p j and once you obtain the r j plus 1 you already have stored r j dot r j.

This A p j, once you find this and utilize it here, so that you can avoid doing the matrix

multiplication several times. You have stored r j dot r j and then r j plus 1 divided by this

r j dot r j which you have stored you get beta j and p j plus 1 is r j plus beta j p j. And

then you if a mod r j, so, here you check if mod r j is less than epsilon. If then EndDo,



you come out of the iteration loop say that the solution has converged else you keep on

iterating it for the right solution.

This is the algorithm though the mathematical formulation deals with number of steps

and manipulations  using  matrix  algebra.  The algorithm looks  very simple.  It  is  also

extremely straightforward to write a computer program for this which will give us good

result for and but this is always for this has to be remembered this is for symmetric

positive definite, if A is not symmetric this algorithm will fail.

(Refer Slide Time: 08:28)

Now, let us look into the performance and which is interesting. So, there are few N into

N matrix. So, we have a A N into N X N is equal to b N. We have a N into N matrix. And

we started the changing the values of N from 16 to 256. So, finally, you are solving 256

into 256 equations.  And the convergence criteria  is  kept  very small  10 to the power

minus 11 etcetera.

So, what we can see is that Jacobi takes 1253 iterations for this particular matrix. Gauss

Seidel takes half of that, say SOR with optimum over relaxation further smaller value.

However,  minimum  residual  and  steepest  descent  takes  1300  iterations.  Conjugate

gradient takes only 32 iterations and we can check this is twice N basically number of

iterations.



For N is equal to 32 Jacobi, Gauss Seidel MR etcetera takes around Jacobi MR SD they

are comparable takes around 400 4800 iterations, Gauss Seidel takes 2200, SOR with

optimum over relaxation takes 760. And conjugate gradient takes 63 which is almost

twice of N. And these things continue that the number of iterations in conjugate gradient

is much smaller than the number of iteration in any i other of them.

So, it is for symmetric positive definite matrixes conjugate gradient,  it  is a very first

solver.  When  Jacobi  is  doing  16000  iteration  or  215057  iterations  for  a  better

convergence conjugate gradient is only doing 484 iterations. Another interesting thing we

can see that if  we compare between steepest  descent or MR with conjugate gradient

steepest descent with conjugate gradients steepest descent with conjugate gradient. The

number of iterations are almost square root of that. So, the convergence rate is almost

square for conjugate gradient compared to the steepest descent algorithm or even is very

high compared to any other algorithm.

So, for symmetric a matrix this is one of the fastest solver till we know and the number

of iterations are of the order of number of rows in the matrix. If we keep the convergence

criteria smaller all these numbers will also fall down. However, this is very important

aspect.  Also there is a one matrix  vector product and few vector products. So, if we

compare the number of floating point count per iteration rather floating point count part

we can  see that  it  is  of  n  square  plus  n which  is  actually  less  than successive over

relaxation correlation or steepest descent.

So, conjugate gradient is a very first solver as well as the number of iterations number of

floating point operations per iteration is small. So, number of iteration is small number of

operations per iteration is small. So, in a as a whole it will give us a very first solver and

extremely first solver and the number of iterations are usually of the order of n. Why is it

first? For that we will quickly look into the convergence criteria of conjugate gradient

method.
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Let x m be the approximate solution and obtained at the mth step of conjugate gradient

algorithm and x star be the approximate solution and we define eta is lambda mean by

lambda max minus lambda mean. Then x star minus x m it is A norm. So, what is a

norm; y’s A norm is equal to y transpose A y.

So, x star minus x m’s A norm is equal to x star minus x 0 x star is the exact solution x m

is they mth iteration solution A norm by polynomial of 1 plus 2 eta and this polynomial C

m. So, C m is a function of 1 plus 2 eta, it is not C m into 1 plus 2 eta C m is a function

of 1 plus 2 eta.

This polynomial C m is known as the Chevyshev polynomial of degree m of first kind,

not going into detail that is the polynomial of 1 plus 2 m. If you can simplify this that k

being the spectral condition number lambda of matrix A, lambda max by lambda mean; x

m by x star minus x m is of A norm is less than equal to twice root of spectral condition

number minus 1 by root of spectral condition number plus 1 to the power m x star minus

x 0 by A.

So, convergence is a function of I am sorry convergence remains a function of spect root

of spectral condition number. And as small is this number it will converge first. Now,

earlier  for  steepest  descent  we  have  seen  that  convergence  is  a  function  of  spectral

condition number. Spectral condition number is a number greater than 1 is the relation

between lambda is lambda max my lambda means. So, it is always greater than 1.



Root of spectral condition number must be smaller than the spectral condition number.

So, this particular coefficient which is being multiplied with x star minus x 0 to be see

the mth order error must be smaller number than the coefficient which was multiplied

with the same norm for steepest descent algorithm and how smaller?  This is root of

spectral condition number or a spectral condition number in square root.

So, in a way we can get the idea that the rate of convergence or the convergence factor

will be rather rate of convergence or the convergence vector will be in a sense square

root of that. Therefore, the number of iterations will be also square root of the number of

iterations  first  steepest  descent  method.  And that is  why conjugated  it  is  a very first

solver because it is convergence depends on the root of the spectral condition number.

And the number of iterations are almost square or of the order of square root of number

iteration needed for spec steepest descent type of algorithm.

So, we get an algorithm which is robust which can handle any A which is symmetric

positive definite and is a very first solver. What is the advantage in conjugate gradient

method considering the fact that it is a Krylov subspace based method because Krylov

subspace  based  methods  need  inversion  of  the  Heisenberg  matrix  h  m  of  a  upper

triangular matrix with one sub diagonal need inversion of that matrix. And the Lanczos

algorithm needs a TDMA type of a method to solve this particular equation where h m is

replaced by a tri diagonal matrix T m.

Inverting even or even applying like a T m inverse or h m inverse doing these things

even if  T m is  a tri  diagonal  matrix.  They are expensive then this  particular  method

because it uses it does not use recursive method it does not use matrix inversion. It uses a

method through which the auxiliary vectors are advanced utilizing the factor that they are

a  conjugate.  And  the  residual  vectors  are  obtained  at  next  level  assuming  that  one

residual vector is orthogonal to all the previous residual vectors.

So, using this properties we can formulate linear relationships for advancing residual

vector as well as the auxiliary vector and then we can very easily advance the x m plus 1

to the or the it or the solution x to the next iteration level and it converges very first due

to the proper due to the as the function is convergence is a function of root of spectral

condition number.



So, considering all this conjugate gradient becomes a very first solver and though it is a

solver of that of Krylov subspace methods which belongs to Krylov subspace method.

However, it does not explicitly find out h m inverse or solve T m y is equal to beta e 1

rather it uses some properties like A conjugacy of auxiliary vector and r'm’s orthogonal

to each other. And devices are faster way to solve the Krylov subspace problem.

Now, this is a very good method. However, this is restricted only for symmetric matrices.

And now our question will be what will happen for a general sparse matrix which is not

symmetric. So, what are the first methods based on Krylov space for that? And for that

we will start looking into oblique projection methods. We will start a discussion very

soon on oblique projection methods. And after that we will look into our different type of

Krylov subspace method once we finish some discussion on oblique projection method

different type of a Krylov subspace methods.

So, let us quickly look into one the new the generalize method for any matrix we will not

restrict ourselves to positive to symmetric positive definite matrix for any matrix which

is  called  a  GMRES method  or  Generalized  Minimum Residual  method  and it  is  an

oblique projection method.
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So, Krylov subspace matrix solvers this is a projection method that seeks an approximate

solution x m from an affine subspace x 0 plus K m by imposing condition that b minus x

m or the residual is orthogonal to L m, L m is another subspace of dimension m x, 0 is



initial guess. In case of Krylov subspace methods this space K m is K m of A and r 0, r 0

is the initial residual. Where k m is span by r 0 A r 0 A square r 0 A to the power m minus

1 r 0. 

And till now we have looked into orthogonal methods, where L m is equal to K m which

are called the orthogonal  methods.  And now we will  look into GMRES which is  an

oblique method oblique projection method that is L m is not is equal to K m, b minus x

m is not orthogonal to K m rather it is orthogonal to A K m.
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So, let us see what do you we mean by that. The idea of generalized projection method

generalized minimum residual method is this method is a projection method based on

taking L m is equal to A K m in which K m is the mth Krylov subspace starting with the

first basis of Krylov that Krylov subspace b 1 is r 0 by mod of r 0 first orthogonal unit

based orthonormal basis of that. And through this technique, so, starting with v 1 is equal

to r 0 by mod r 0 we will find out one basis for K m and rather we will later we will find

out other orthonormal basis for K m and find out the K m and then we will get L m is

equal to A K m. And propose a general projection method and this method is called

Generalized Minimum Residual method or GMRES.

This technique minimizes residual norm of b minus A x over all vectors x 0 plus K m.

So, instead of minimizing x transpose A x minus x transpose b, what we are doing for

conjugate gradient method? Now we are minimizing b minus x. And if we try to relate



this with the general projection methods we will see that this minimization happened in

Minimum Residual or MR method. Now, M R was a one d projection method. When we

try to generalize MR, we get the generalized minimum residual the generalized minimum

residual method, GMRES. From one d to multi dimensional general projection method if

we go we get GMRES.

The implementation of this algorithm is based on an approach which finds the basis of K

m first which is similar to FOM, Full Orthogonal Method. In full orthogonal method K m

was is equal to L m. In FOM, full orthogonal method K m was same as L m. Here, we

will find out K m exactly the way same way or rather I will write it opposite. In full

orthogonal method L m is same as K m. Here, we will find out K m which is similar to

FOM. However, in GMRES we will find out L m which is not K m rather is equal to A K

m, but the but how will we find out K m? That will be same as FOM.

So, all the Heisenberg matrix all the basis of the Krylov subspace everything will be

exactly same how we have found out our Krylov subspace and the Heiseberg matrix

basis V m and H m in full orthogonal method all will be exactly same. Now, once we

have found out K m we will do something else. And the best thing about this method is

that this method works for any nonsingular matrix.

So, we are now not limited to symmetric  matrix for non symmetric matrix,  for non-

diagonally  dominant  matrix,  for  all  these  matrices.  This  method  works  for  all  these

matrices. If you remember MR, minimum residual method was also effective for all this

matrices.  However,  that  was  dependent  on  that  is  typically  slow  method  because

convergence rate is dependent on the spectral condition number of A transpose A, where

the spectral condition number usually becomes much higher than the spectral condition

number of A.

So, it is a minimum residual method was a slower method considering other methods of

that  particular  class.  However, this  GMRES is will  be faster  than minimum residual

method, but as minimum residual method it can work for any type of nonsingular matrix.
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So, finding basis for K m is same as what we have done in Arnoldi’s method. Arnoldi

modified  GYram-Schimdt  method  which  is  the  say  which  will  be  continued  to  full

orthogonal method later that you start with a create a vector of norm 1 and then you find

out w is equal to find out h i j which are the parts of the Heisenberg matrix, h i j. And you

find out v j which are the basis vectors for the orthonormal basis of Krylov subspace.

And you start with v 1 is equal to mod r 0 sorry v 1 is equal to r 0 by mod r 0, we will

follow full orthogonal method where, the Krylov subspace is span of r 0 A r 0 A square r

0 so on A to the power m minus 1 r 0.

So, you start with the initial guess to be initial first vector the v 1 to be the initial residual

normal in normalized form and you get the basis vectors of the Krylov space you need

for solving x is equal to b. And h i j are the members of the Heisenberg matrix h bar m.
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So, we will use H bar m and H m H bar m we will use the H bar m and H m in some

cases.  From H bar  m if  we remove the last  row it  becomes  the  another  Heisenberg

matrix, so which is H m. Any vector x in x 0 plus K m can be written as x is equal to x 0

plus V m y, where y is a m vector and V m are the orthonormal basis functions of Krylov

space. And this is same as Arnoldi or FOM method.

Now, if we define J y as b minus A x l 2 norm or if I substitute x is equal to b minus x 0

plus V y’s l 2 norm. Now, b minus A x is equal to b minus A x 0 plus V y m which is r 0

minus A V y m. From Arnoldi’s algorithm, we have seen that v 1 is r 0 by mod of r 0 and

mod of r 0 is given as beta.

So, we can write and we have also seen from Arnoldi’s algorithm V m is V m H m w m e

m transpose which is V m plus 1 into H m, but the full Heisenberg matrix.

So, if we substitute this here we can write b minus A x is r 0 minus A V m y and A V m

right this A V m can be substituted as V m plus 1 H m bar. And r 0 can be written as beta

v 1 which comes from here r 0 is equal to beta v 1 which is e 1 becomes the first unit

vector 1 0 0 this is b e beta e 1 minus H m bar y V m plus 1; V m plus 1 is the basis of

the orthonormal basis of Krylov subspace. So, we got an expression for b minus A x.
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Since, the column vectors of V m plus 1 are orthonormal, we can write J y is b minus A x

second norm is b minus A x 0 plus V m y second norm and beta e 1 minus H m bar y V

m plus 1 second norm. There a relation we exactly got beforehand that beta b minus A x

is beta e 1 V m minus 1.

So, since V m plus 1 has orthonormal columns this is beta e 1 minus H m bar y. Now, the

GMRES approximation is finding out the unique vector x 0 plus K which will minimize

J y that is x m will be x 0 plus V m y m, where y m is the value of y for which beta e 1

minus H m bar y is minimized minimal. And this is the idea of the GMRES method that

you find out minimum of minima of J y which is beta e 1 minus H m bar y and you start

that J y is equal to beta minus A x 2.

Find out the minima of that which is finding minima of beta e 1 minus H m bar y. And

with this y m, V m you have already found out using Arnoldi or FOM type of method.

With this y m you find out x m is equal to x 0 plus V m y m which is the solution, this x

m is the solution of A x is equal to b approximate solution of A x is equal to b.

Now, this is instead of solving x is equal to b what you have to do is you have to find out

minima of beta e 1 minus H bar m y. However, the minimizer is inexpensive to compute

as it requires solution of m plus 1 into m least square problem where the value of m is

typically small. And with this idea we will move further and we will see how we can for

propose an algorithm for GMRES and what are the convergence criteria for that.



Thank you.


