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Welcome. So, we are discussing about Conjugate Gradient Method and actually trying to

develop a method based on our previous  knowledge of  full  orthogonal  methods and

direct Lanczos algorithm for tridiagonal method in Krylov subspace method.

So, started with giving a initial given an initial background on Krylov subspaces, and

then looked into Arnoldi modified gram Schmidt and full orthogonal method algorithm.

And obtained the relationship between the residual and the basis of residual at mth step

and the m plus oneth basis of Krylov subspace and observe that how it can be obtained

for  a  tridiagonal  for  a  symmetric  matrix  a  where the Heisenberg matrix  h is  that  of

Tridiagonal form.

This is what we obtained in the previous lecture. So, you can I will quickly look into the

symmetric  linear  system solver  in  Krylov subspace  which we have  discussed earlier

direct Lanczos method.
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The Lanczos method finds an approximate solution of x m is equal to x 0 plus V m Y m

which is a Krylov subspace method. And this x m is equal to x 0 plus k m A comma r 0.

Or let me write it down; this is same as x m is equal to x 0 plus k of a r 0 k m. And this is

a  Krylov  subspace  method.  And  it  uses  inversion  of  tridiagonal  matrix  T m where

Arnoldis method will give us H m. And H m is equal to T m for symmetric matrix H m is

T ma tridiagonal matrix and this comes from the full orthogonal method.

So, essentially it shows that this is an orthogonal method. Where Y m is found out by

inverse of the Heisenberg matrix which is a off tridiagonal matrix now. And a TDMA

type of algorithm tridiagonal matrix algorithm can be used for direct and first inversion

of the tridiagonal matrix. And this starts with the step that T m the tridiagonal matrix is

product of a lower triangular matrix. So, you can write T m is equal to L m into U m, and

then upper triangular matrix. And we can substitute it x m is equal to x 0 plus V m Y m is

T m inverse b y.

So, this is T m inverse y Y is Y m here. And further one step gives us x m is equal to x 0

plus V m V m inverse L m L m inverse y this is this is what we have done in D-Lanczos

algorithm earlier.
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And x m is equal to x 0 plus V m U m inverse L m inverse y. We can now say that this V

m U m inverse this will put this is what we do in a TDMA type of algorithm. We have



divided this as U m inverse L m inverse and right two different forms of the matrices P m

is equal to V m U m inverse and Z m is equal to L m B m inverse.

So, you can write x m is equal to x 0 plus p m Z m. and then we find an iterative relation

for calculating P m which is the which is the last column of P m based on; and we will

change the values of m recursively and get different columns of the matrix P m. And

using this recursive relation we can calculate what is P m from there we get V m u m

inverse. And similarly Z m is also calculated using a recursive relation.

So, this recursive relation is heart of a tridiagonal matrix algorithm. And we have done it

in  very detail  when discussing about  direct  solvers  for tridiagonal  matrices  which is

tridiagonal matrix algorithm or Thomas algorithm. Remember, when we did looked into

finite  difference  approximation  of  one  dimensional  heat  conduction  equation  or  one

dimensional  Laplace  equation.  And  got  a  tridiagonal  matrix  and  then  observed  that

instead of doing gauss elimination a TDMA using recursive relation we can write a td

write an TDMA algorithm which you will give us very first solution. So, this can be

utilized here.

So,  this  is  this  is  how  the  direct  Lanczos  method  works  that  using  this  recursive

relationship you find Z m and P m and then you substitute P m here and Z m here. And

then you write x m is equal to x 0 plus b m Z m; one important vector that we construct

in  this  method is  the auxiliary  vector  P m we are  using  a  recursive  relationship  for

finding out P m. And we can do it in a more elegant way we can probably get a very

much better solution here.

The problem with recursive there is one very significant much significant problem with

recursive relation that we need in today’s talk about parallel computing etcetera recursive

relations  do  not  work  in  parallel  computing.  So,  if  this  recursive  relation  can  be

substituted by some other method we will probably get a better solution algorithm.

So, we focus on looking into the auxiliary vector P m. And interestingly some further

characteristics of auxiliary vector will come out in a while.
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So, in the direct Lanczos algorithm the x m is obtained by a recursive relationship as x m

is equal to x m minus one plus xi m P m and P m and xi m are found using recursive

relations.

Now,  with  this  background  we  will  probably  try  to  look  into  more  detail  on  the

properties  of  the  auxiliary  vector  P  m,  because  till  now  till  coming  into  Lanczos

algorithm we were only  interested  about  the  residual  r  and new residual  r  m initial

residual r 0 and V m what are the bases of Krylov subspace and the Heisenberg matrix H

m H m and V m comes out of the Arnoldi modified gram Schmidt method. And based on

my initial guess I can find out what is the initial residual r 0.

If we have r 0 H m and V m we full orthogonal method tells that we should be able to

find out f m is equal to x m is equal to x 0 plus V m y m right. So, full orthogonal

method tells us x m FOM full orthogonal method is equal to x 0 plus V m y m where y m

is equal to H m inverse of basically beta e one where beta is equal to mod of r 0.

The problem in the full orthonormal method that we have to find out inverse of a upper

triangular matrix which is not as probably not as costly as a general matrix A because a

can be of any shape and this is an upper triangular matrix. However, this will involve

certain number of steps. At least the steps for required for back substitution of a gauss

elimination process. So, instead now for try for symmetric A H m is equal to T m and y



get we get y is equal to T min verse beta e one which is now the d Lanczos method

which we are discussing here. And this is this T m is tridiagonal.

So, inverting this T m needs the recursive relationships and recursive steps like find out

xi m find out lambda m find out P m all these regressions are related for inverting T m

efficiently. Now this particular P m, we have introduced for while we are looking into

inversion of T min versions instead of writing a writing it x m; x m is equal to x 0 plus V

m T m inverse beta e 1 I write x m is equal to x m minus one plus xi m p m.

So, this is a new vector or an auxiliary vector which we are introducing at this stage. Let

us look into the auxiliary vector in to little more detail.
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And there comes a proposition that r m is equal to b minus A x m for a different values of

m be the residual  vectors  produced by Lanczos  or  D-Lanczos algorithm.  That  is  for

symmetric a matrices right, when we write Lanczos and D-Lanczos we have ensured that

for symmetric A matrix. This is important, its only for symmetric matrix. And p m is at

different values of m 0 2 0 1 up to larger numbers. P m are the auxiliary vectors produced

by D-Lanczos algorithm.

And then each residual vector r m is such that r m is equal to sigma m V m plus 1; where

sigma m is certain scalar. As a result the residual vectors are orthogonal to each other.

Exactly this are this we have discussed of in the last session that r m gets the form.
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Let me write it down for you: r m r m is equal to minus beta m plus 1 e to the power m T

Y m V m plus 1; this one. And there is another proposition which is more important the

auxiliary vectors p i for an a conjugated step; from an a conjugate step. That is A p i p j is

equal to 0 for i not is equal to 0.

So, A P i and if we take it is dot product with P j this is equal to 0 for all i not is equal to

j. Or we can write p transpose A P is a diagonal matrix. That is only when P i transpose A

P i that row will come that will give a diagonal one value. And for all other combination

of i and j it will give us zeros. So, this is called a conjugate step here. This is the use a

different pen this is a conjugacy that A P i dot p j is equal to zero. Now, we will show that

it is actually coming to 0..

Or p transpose A P p transpose A P is a diagonal matrix. So, p is are being utilized for

deriving  the recursive relation.  Now what  we can see and they  are also following a

recursive relation what you can see is that before we instead of going into the recursion

probably if I can have 1 p i can get idea about the other p s simply by the fact that each p

is orthogonal to the other a A p multiplied with A p transpose A p is equal to 0 in case of i

is not equal to j or p transpose A p the capital p transpose A p matrix p is the columns of

small p and the columns of capital p p transpose a p is a diagonal matrix.
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The first proposition followed directly from Arnoldis method which we have seen earlier.

And Arnoldis method for everything we should write for tri for symmetry A where you

can so write beta right. And the proposition 2 A conjugate three vectors. We need to show

that p m transpose A P m is a diagonal matrix; P m is V m U m inverse that is how the

auxiliary matrix auxiliary vector matrices defined p m transpose P m is V m U m inverse

transpose a V m. So, a b transpose is b transpose a transpose that will be U n inverse

transpose into V m transpose A V m.

Now, from Arnoldis method what we have seen is that V m transpose A V m is equal to

the  Heisenberg  matrix  H  m.  And  which  is  same as  the  tridiagonal  matrix  T m for

symmetric  matrix.  So,  what  we get?  P m transpose  A P m is  equal  to  U m inverse

transpose T m U m inverse T m is a tridiagonal matrix; U m is a our triangular matrix.

So, T m U m inverse gives us a lower triangular matrix L m this can be verified very

easily  by  looking  into  the  properties  of  triangular  matrix.  And  that  inverses  and

transposes also.
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So, P m transpose A P m is equal to U m inverse transpose U m inverse. And T m U m

inverse is because U m is an upper triangular matrix. So, T m U m inverse will be a

lower triangular matrix L m. So, P m transpose A P m is equal to U m inverse L m;

inverse transpose L m. L m is a lower triangular  matrix  U m is the upper triangular

matrix. So, U m transpose inverse multiplied by L m that also gives us a lower triangular

matrix.

So, P m transpose A P m is  a lower triangular  matrix.  Now we will  see that  A is  a

symmetric matrix. So, if we take p look into P m transpose A P m this is also symmetric

matrix. A symmetric matrix is of lower triangular form. So, A is symmetric therefore, P

m transpose A P m must be a symmetric matrix. P m transpose A P m a symmetric matrix

this is P m transpose A P m which is said to be of a lower triangular form. So, these are

zeros here all the upper above diagonal terms are 0 here. This is also symmetric. So, the

numbers beyond that below the diagonal must also be 0, so this should have the form of

the diagonal 0 and 0.

The symmetric matrix is also a both upper and lower triangle upper triangular as well as

lower triangle.  So, lower triangular matrix can only be symmetric same for an upper

triangular matrix it can only be a symmetry when it is a diagonal matrix. Therefore, P m

transpose A P m must be a diagonal matrix. And we get the fact that P or small p is the A



conjugate vector or I will write small instead of p all the columns P m are A conjugate

vector.

So, now how can we utilize this for deriving a new solution algorithm?
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This is called the Conjugate Gradient Method. The algorithm is one of the best known

iterative techniques for solving sparse system positive definite linear; sparse take a for

sparse lot  of symmetric  positive  definite  linear  matrices.  Symmetric  positive  definite

matrix which are sparse can be solved by this method and this is one of the best known

methods we will show it in a while.

This method minimizes  the function f  x is  equal to half  of x transpose a x minus x

transpose  b  for  symmetric  positive  definite  matrix  A.  There  is  (Refer  Time:  19:39)

general  projection  method.  So,  if  the  idea  comes  from the  steepest  descent  type  of

algorithm that it should minimize a function along a particular direction. And minimize

direction of f x is we can show it very easily is the solution of x is equal to b.
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Similar to D-Lanczos algorithm x is updated as x j plus 1 x j plus a p j. So, they have a

recursive like relation for exchange you know it is an (Refer Time: 20:08) should not say

recursive relation or the iterative relation for x j.  The difference is that the recursive

relation for p will be substituted by the A conjugacy theorem. Therefore, the residual

vector will follow a x j; if I multiply A both side A is j is equal to A x j plus a alpha p j

substitute both side from b b minus A x j plus 1 which is the residual r j plus 1 is equal to

b minus A x j which is the residual r j minus alpha j A p j.

Now, we have the earlier first proposition that r j’s are orthogonal to each other. So, if I

take a dot product of with r j in the both side r j plus 1 r j transpose will be 0. And we can

get using the values of r j and p j. So, if we can get alpha j. So, if I know about the

residual and the auxiliary vector at any j-th level I can find out the coefficient alpha I am

sorry I can find out the coefficient alpha through which x will be modified in that level.

So, as r j’s are orthogonal means this a b is equal to 0 i think we have probably discussed

in somewhere. So, a b is equal to s means b transpose a. So, r j plus one r j is equal to 0

means the dot product or dot product dot product of r j and r j transpose r j plus 1 and r j

0 r j plus 1 is r j minus alpha A P j if we substitute we had a relationship for; A is equal to

r j dot r j divided by r r j dot a p j.
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The first basis vector p 1 is a gradient and this is the main idea of conjugate gradient.

Choose the first basis vector p 1 is the gradient of f at x 0. The first basis of p auxiliary

vector space p is the gradient of gradient f at x 0 which equals to A x 0 minus b. This is

the first basis vector.

The other vectors in this bases will be conjugate to the gradient of f. Each next p k plus 1

is defined to be a linear combination of r k plus 1 and plus p k under this conjugacy

constant. The direction of P k plus 1 is given by the projection of r k plus 1 on to the

space orthogonal to p k with respect to the inner product induced by A..

Once little complicated way of way the how the mathematical formulations are put into

statement, but if look into the step that the direction for P k plus 1 is sorry; the each next

P k plus 1 the first P 1 is same as a x 0 minus b as the residual. The next auxiliary vector

is the combination of the new residual vector and the old auxiliary vector. This is how we

are constructing it fine. So, A p j dot r j is equal to a P j dot P j that means, I can write r j

here we can write r j is equal to P j minus beta j minus 1 P j minus 1. And I substitute it

here that is that what is the conjugacy what is the r j transpose A P j this is A Pj into p j

beta P j minus 1. So, this is A P j in to transpose P j minus beta j minus 1 A P j p j minus

1. And this is equal to 0 from the conjugacy constraint we have already found out.

So,  started  with  the  fact  that  next  each  auxiliary  vector  is  the  previous  is  a  linear

combination of previous auxiliary vector and the present residual vector. And then we



take the dot product of one auxiliary vector with the residual vector at a conjugate dot

product. And it comes out to be A P j P j.

And sorry substituting; so beta j minus 1 becomes 0 right. And now if we take a A P g r j

is found out if we take a dot product of missed one step here sorry then probably (Refer

Time: 25:46) write like this. So, now from this how to find out beta what should be the

linear combination of P that should be added with r j plus 1.
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So, I can start working like this that P j plus 1 is equal to r j plus 1 plus beta P j beta j p j.

And then P j plus 1 and then take the dot product of the entire thing with a P j take a dot

product with A P j of the entire thing. And this will be 0, so this is A P j r j plus 1 plus

beta j A P j r j and P j r j we have found out A P j p j.

So, using this, so like I can write this transpose this, if I do take this dot product. From

there I can find out what is beta is minus r j plus 1 A P j p by p j p j alpha j is equal to r j

p j r j. And this particular derivation l will I will not do it right now here, but this is

exactly same as the derivation of alpha j. Which we will follow from here, take a dot

product  of this  expression with A P j.  And you will  find out  you will  arrive in this

particular expression of beta j.

So, what beta j needs this r j plus 1 A P j divide divided by p j a p j. Now for this is a

matrix vector product multiplied with a vector. Matrix vector products are expansionally



computationally expensive, though we have we are doing it once here. Now this can be

very way well substitute changed by substituting r j plus 1 is equal to r j minus alpha j A

P j. And if we substitute this r j plus 1, if we substitute this r j plus 1 here we get beta j is

equal to r g plus 1 by r j r j. So, if we start with one value of r j r j transpose r j and at

next step we again evaluate r j transpose r j the ratio will give us the beta j.

So, this should be sufficient  to update P as well  as to update x and r;  r also can be

updated using alpha X is updated right x is always updated.
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Like x j is equal to x j plus 1 is equal to x j plus alpha j r j.

So, with this updates we can now finish the conjugate gradient algorithm. And we will

look into it in the next session.

Thank you.


