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Welcome we are discussing about Krylov subspace methods for solving Matrix equations

iteratively. So, today we will discuss about Conjugate Gradient Method which is a very

first Krylov subspace method for solving symmetric matrix equations. The classes before

we have discussed about Arnoldi’s method with through which using something like a

modified Gram Schmidt method we can get orthogonal basis for Krylov subspace. And

then  we  have  also  seen  how  to  apply  this  for  solving  matrix  equation  using  full

orthogonal method or FOM.

And  we  also  looked  about  different  variants  of  FOM  and  then  further  looked  into

Lanczos  algorithm in  which,  FOM can  be  converted  for  symmetric  matrix  equation

which essentially  gives  something  like  a  tri  diagonal  matrix  system in which,  direct

solution like TDMA type algorithm can be utilized for faster solution. And now, we will

continue this discussion for conjugate gradient method.

Before going into that, I will again quickly review few of the important things in Krylov

subspace method, as well as full orthogonal method or and Arnoldi’s method, which will

give a base for continuing this discussion to conjugate gradient method.



(Refer Slide Time: 01:49)

So, if we look into the matrix solver solution equations for example, when we discussed

about steepest descent algorithm, which is the building block of any projection method.

And Krylov subspace method is just an extension of general projection method whether,

the where the projection space is not one dimensional rather multi dimensional.

So, if you look into the steepest descent algorithm for example, we have a we have to

solve Ax is equal to b and we define a function J is equal to x transpose A x minus x

transpose b, which has to be minimized J min will imply, A x star is equal to b. This has

to be solved so, we get the exact solution of A x is equal to b.

So, we start with the iso contours of J and this is basically, steepest descent what I am

discussing here. So, these are the J constant lines or we call them J isocontours, these are

the lines over which J is constant. So, we will start from any value x 0 and evaluate what

is b minus A x 0 that is equal to r 0. And then I will move along r 0, I will keep on

moving along r 0, till just one second this r 0 has to be orthogonal to it.

So, let us select the x 0 here. This is just for convenience of explaining that this x 0 here

and I will keep on moving along r 0, say up to a distance alpha 1. Here, the r 0 vector

will be tangential to the new iso contour and I have to change the search direction. I have

to evaluate so, this is x 1 where, x 1 is equal to x 0 plus alpha 1 r 0 for example. And I

will evaluate r 1 is equal to b minus A x 1 and then I will move along r 1 to find out x 2



where, x 2 is equal to I will write x 2 is equal to b minus sorry, x 2 is equal to x 1 plus

alpha 2 r 1 something like that.

So, at each step x will be updated as a function as xk plus 1 is equal to xk plus alpha k

plus 1 rk something like this. And my rk will be defined as b minus A x k. So, now if we

look into this update into little detail or just work it, work out the updates for first 2-3

steps.

(Refer Slide Time: 05:19)

So, I rather let us this I keep with the relations that, x k plus 1 is equal to xk plus alpha k

plus 1 r k and r k is equal to b minus A x k. Exactly, this is what we have done in steepest

descent, which is building block of projection method. So, this later we will give as what

are the general projection methods. Now, I can write that let us use another pen, x 1 is

equal to x 0 plus alpha 1 r 0. Then, x 2 will be x 1 plus alpha 2 r 1.

Now, what is x 1? X 1 is nothing but x 0 plus alpha 1 r 0. And what is r 1? R 0 is equal to

b minus A x 0, r 1 is equal to b minus A x 1 is equal to b minus A into x 0 plus alpha 1 r

0, which is b minus A x 0 is r 0 minus alpha 1 A r 0. So, I can substitute here that x x 1 is

x 0 plus alpha r 0 and this is plus alpha 2 into r 0 minus alpha 1 A r 0. So, this is x 0 plus

alpha 1 plus alpha 2 r 0 plus minus alpha 1 alpha 2 A r 0.

Now, can we see that this can be written as also x 0 plus say; A 1 r 0 plus A 2 A r 0.

Similarly, if I write expression for x 3, this will be x 2 plus alpha 3 r 2. And now, I will



substitute calculate the values of r 2 and x 2 and substitute it, here I will again get x 0

plus A say, b 1 r 0 plus b 2 A r 0 plus b 3 A square r 0 so on. So, I will get a general

expression for mth order or mth iteration of x as, let us let me wipe this part out so that,

or let me write down the general expression that, x m after mth iteration is equal to x 0

plus say, theta 1 r 0 plus theta 2 A r 0 plus and it goes up to theta m plus 1 A to the power

x 3 is related with beta 3 so, theta rather theta 3 theta 3 A to the power m minus 1 r 0.

So, the entire update of x 0 becomes a function of r 0 plus A r 0 plus A to the power m

minus 1 r 0. And precisely that gives us the idea of Krylov subspace that,  x will  be

updated in a sub in a affine space so that, x m is equal to x 0, x m is equal to x 0 plus k

Krylov subspace of A and r 0 where, k m A r 0 is the space spanned by is span of r 0 A r

0 is square r 0 so on, A to the power m minus 1 r 0.

So, this is: what is the basic definition of Krylov subspace; what we have used earlier.

So,  now, if  we look into  the  definition  how x  is  updated  and when updating  x  for

example, when we looked into steepest descent x is always updated along r. And in that

way, we made it also a point that the new residual vector r should be orthogonal to the

previous residual vector or also to the functional subspace iso contour of J.

So, there is a constraint on how x will be updated and based on which the values of alpha

are calculated. So, x is a x is any way updated in this particular plane, which is space or

which is Krylov subspace, this is the Krylov subspace, x is always updated in along on

Krylov subspace. And what are the coefficients through which,  these updates will be

there, what will be theta 1 theta 2 theta m, that will come from the projection constraint

that  the  update  should  be  orthogonal  to  or  the  residual  should  be  orthogonal  to  a

particular plane.



(Refer Slide Time: 11:20)

So, if we now look into the recap what we have seen in Krylov space, which is we will

also write that this is a general projection method. And, we have also seen that,  this

update is updating x in Krylov subspace we will make it converge into the exact solution

x star and the residual as we update x and (Refer Time: 11:50) Krylov subspace also the

residual will also converge to 0.

The projection methods seeks an approximate solution x m from an affine subspace of x

0 plus K m, I have discussed: what is the definition of affine subspace in last few classes.

By imposing the condition that b minus x m is a this particular perpendicular to L m

where, L m is another subspace of dimension f and x0 is the initial guess in case of so,

this is the statement for general projection method. In case of Krylov subspace methods,

K m is given by K m of a r 0 where r 0 is b minus a x 0 and K m is a space spanned by r0

A r0 8 A square r 0 up to the power A to the power m minus 1 r 0.

So, what we are thinking as multiple iterative steps or multiple search directions in a

steepest descent algorithm is basically, the multiple bases vectors through which x m is

updated x0 is updated as x m and these are the multiple base several bases vectors of the

Krylov subspace. And we have seen what is the grade of why with respect to A what can

be the maximum dimension of Krylov subspace etcetera in last few classes and have

shown that,  this is a convergent method, this the in general Krylov subspace method

should converge to the right solution based on any (Refer Time: 13:33) value of x0 or



any  starting  residual  r  0.  So,  our  goal  is  to  develop  efficient  solvers  using  Krylov

subspace method.

(Refer Slide Time: 13:36)

The different values of versions of Krylov subspace methods arise from different choices

of L m; that means, the space on which to which the residual should be orthogonal and

from the way in which the system is preconditioned. This is a recapitulation slide of

previous lectures. There are 2 broad choices for L m which, gives based on techniques:

one is L m is equal to K m, which is an orthogonal method and another is L m is equal to

AK m, which is an oblique projection. 

And now, in this particular session we are concentrating on the full orthogonal method.

We have earlier discussed about full orthogonal method also and we will see how for

symmetric matrix we can generate very efficient solver from full orthogonal method.



(Refer Slide Time: 14:42)

And Arnoldi modified Gram Schmidt is an algorithm through which,  we can get the

bases vectors of the this is bases vectors of v, the bases vectors of the Krylov subspace

which are the base v’s are the bases vectors of Krylov subspace.  We can generate  it

through Arnoldi modified Gram Schmidt method that, you start with any vector v 1 and

which is basically, your when you are using full orthogonal method this will be r 0. And

then, take a product of v with respect to the A matrix A v, from v you subtract A v, with v

is  the  bases  of  Krylov  subspace  A v  is  the  next  bases  of  Krylov  subspace  so,  you

orthogonalize  v  and  A v  using  something  like,  Gram Schmidt  error  in  find  out  the

orthonormal bases vectors.

In that way you get another matrix which is h i j; which is the product between the new

bases  of  Krylov  subspace  space  and  the  older  bases  of  Krylov  subspace,  before

orthogonalization of the new bases. And this h i j forms a Hessenberg matrix h m. And

this Hessenberg matrix means, sorry this is h bar m forms a Hessenberg matrix h bar m.

The Hessenberg matrix is basically, an upper triangular matrix plus 1 sub diagonal term

into it. And this is how we get h j because, it goes up to h j plus 1 j so, it goes up to the

diagonal term and plus one sub diagonal term in it. 
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Now, we look into the residual vector form Arnoldi’s method, what is a residual vector at

one particular iterative step on Arnoldi’s method. And this is r m is equal to b minus A x

m and x m is x belongs to, so we have seen it earlier that x is equal to x 0 x m is equal to

x 0 plus K m A y and V m is orthonormal bases of Kn. So, we can write x m is equal to x

0 plus V m multiplied by sorry they K m of x r 0 multiplied by y. So, x m is x0 plus the

Krylov subspace  of  A and r0 and the  orthonormal  bases  of  this  Krylov subspace  is

obtained as V m from Arnoldi method. So, this  comes from Arnoldi,  from Arnoldi’s

method. So, you can write x m is equal to x0 plus V m into y.

 So, if substituted x m is equal to x0 plus V m into y V m into y m (Refer Time: 18:03)

and  y  m’s are  the  coefficients  which  are  multiplied  with  different  bases  vectors  of

Arnoldi’s of Krylov subspace to get a general expression of a general vector in Krylov

subspace. So, x m is equal to x0 plus a general vector in Krylov subspace and we have to

find out what y m is that so that, we can satisfy the equation come to it later.

And so this is b minus A x0 plus V m y m b minus A x0 is equal to r0. So, r 0 minus A V

m y m, which is r0 is again we have if we go to the maybe to the previous slide. So, we

started with not here, but if we if we not in the previous slide if we see, in full orthogonal

method right in FOM we started with the first bases of Krylov subspace is capital V is

equal to mod of r0 into v 1 and which I have written as beta into v 1.



So, beta is mod of r 0 which is the first this magnitude of the unit vector first case of first

residual in Krylov subspace are 0 in Krylov space. So, beta v 1 is equal to and we can

write and this is so, we can write that V is equal to or V is equal rather V not should not

write that we star put r0 is mod r0 into v 1, v 1 is an unit bases you first unit bases first

bases vectors of the Krylov subspace which is an unit vector this is beta v 1.

So, r0 is equal to beta v 1 I substitute r0 is equal to beta v 1 and the mth ordered residual

is beta v1 minus A V m y m. Now, from Arnoldi’s method we got these identities, this

comes again from Arnoldi. If we look into the Arnoldi’s algorithm we have just shown in

the last slide, this these relations are evident from there that A V m is equal to V m H m

plus w m e m transpose, w m is h m plus 1 h m v m. So, now in A V m, I will substitute

A V m by this particular quantity. So, r m is equal to beta v 1 minus V m H m plus w m e

m transpose y m. And this is beta v 1 minus V m H m y m minus h m plus 1 v m e m

transpose.

Now, what is y m and that is what we are trying to find out what is the value of y m.

Because, if we know y m we have defined the Krylov subspace, Arnoldi’s method will

give us the orthonormal bases of Krylov subspace. If we can find y m, we will multiply it

with different bases vectors and find out what is the update in Krylov subspace which is

to be added with initial guess x0 so that I get the final solution. So, now this update is

obtained, if we can remember steepest descent method, alpha is the amount of distance

that I should go along one particular direction vector r. And, this is obtained from the

relation that the residual is orthogonal to particular subspace.

Similarly, full orthogonal method uses the fact that the residual is orthogonal to L m

which is same as K m, the residual is also orthogonal to the prior surface only. And using

that we can get, so this is using the fact that full orthogonal method or Arnoldi’s method

for solving linear equation that gives L m is equal to K m and r m is orthogonal to r m

plus 1 rather is orthogonal to K m.

So, using that we can find out we have shown it in few lectures before, y m is H m

inverse beta e 1. So, H m Y m, H m is the Hessenberg matrix the a part of the Hessenberg

matrix which we have obtained in the last shown in the last slide. So, H m y m is beta e 1

multiply both side by V m, V m H m y m which is the this term is V m into beta e 1, e 1

is an unit first unit vector 1 0 0 which is multiplied with V m will give the first vector in



the of the orthonormal bases (Refer Time: 23:26) beta v 1. So, I can write that, this is

equal to beta V 1 utilizing this factor and they will cancel out. So, I will get that r m is

minus h m plus 1 e m transpose y m v m plus 1. 

This  is  a very important  identity  from the Arnoldi’s method or from full  orthogonal

method that, the residual is orthogonal to the next bases in the Krylov subspace, residual

at one particular m level is orthogonal to the next bases function of Krylov subspace.

Sorry, residual is not orthogonal, residual is parallel, the residual is along the next bases

of Krylov subspace. So, residual will be orthogonal to the previous bases I am sorry.

Residual r m is along v m plus 1 where, v m plus 1 is the m plus 1th bases of Krylov

subspace; mth residual is in the direction of m plus 1th bases of Krylov subspace that is

the finding.

(Refer Slide Time: 24:45)

So, we start with r m is equal to minus h m plus 1 m e m transpose y m v m plus 1. So,

the residual vector is in the direction of v m plus 1 and residual vectors are orthogonal to

each other. Why? This is simply due to the fact that v 1 is orthogonal to v 2 is v m is

orthogonal to v m plus 1, which comes due to Arnoldi method is modified by Gram

Schmidt.

Gram Schmidt method will give a set of orthonormal vectors. So, these v vectors are

orthogonal to each other. Therefore, once I see residual r m or r m is equal to something

say a m v m plus 1 and r m minus 1 is equal to a m minus 1 v m right, that is the



founding here; v m plus 1 and v m are orthogonal to each other. So, r m and r m minus 1;

that  means,  r  m  is  orthogonal  to  r  m  minus  1  and  so  on.  So,  residual  vectors  are

orthogonal to each other.

(Refer Slide Time: 26:08)

For a now for a symmetric matrix A: H m or the part of that Hessenberg matrix is a tri

diagonal matrix. We have shown it earlier if A becomes symmetric H m is a Hessenberg

matrix, so it has a it is a upper triangular matrix with one sub diagonal if A is symmetric,

so H m is also symmetric. So, only the sub diagonal and super diagonal exists and it

becomes a tri diagonal matrix. And we can express this tri diagonal matrix as product of

two bi diagonal matrices; one is a lower triangular form, another is an upper triangular

form. And if we use this form these betas are comes in terms of the h here.

So, r m becomes minus beta m plus 1 e m y m v m plus 1 for symmetric matrix A. If we

can tri diagonalize the Hessenberg matrix h m for symmetric matrix A, we can directly

calculate from that form of the Hessenberg matrix, we can directly calculate what is the

coefficient which will  be multiplied with the m transpose y m v m plus 1 to get the

residual vector.

So, there is a relationship between the residual vector and the tridiagonal matrix which

directly comes here. So, with will I will stop here in this session and with this particular

idea that our residual vectors are at mth level is along the base m plus 1 in bases of

Krylov subspace and residual vectors are orthogonal to each other. We will see how this



we got an expression for the residual vector for symmetric matrices, how this can be

substituted into d Lanczos algorithm or direct Lanczos algorithm where, we are doing

this TDMA type of calculation and we can get a faster solution method. 

Thank you. 


