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Welcome. So, we are discussing about the steepest descent algorithm; where we have

seen that solving a problem Ax is equal to b is equivalent to find out minima of the

functional J x, where J x is defined as x transpose Ax minus x transpose b. And in order

to propose an iterative method for solving or for finding the minima of J x, we discussed

about the gradient search algorithm that choose any value x 0 find J x 0 there, and then

find out the gradient of J and move along minus gradient of J. 

And move up to a certain distance, where this along with J reduces on that particular

line, and this distance is measured by parameter alpha we discussed about how to find

out alpha; till which J reduces along that line. And then when you see that J has reached a

local minima along that particular line change the direction and go to the another take

another direction.

(Refer Slide Time: 01:22)

So, roughly it is this particular method that start with one particular x 0 move along one

direction,  and then see that  this  is  a local  minima of J.  From here you take another

direction and that is how you approach the global minima. And this is the parameter



alpha that distance should be covered in particular one particular such direction so that

the search is optimum and in least number of steps we reach the local minima.  Now we

thought  about  taking  this  into  a  solver  and  writing  and  proposing  an  algorithm  for

iteratively solving x is equal to b or finding J minima using this.

(Refer Slide Time: 02:16)

Which is called the steepest descent algorithm, let k be the kth iteration value. And the

error is defined as d k is x x k minus x x star; where x star is the solution of x star is

equal to b. X star is a where we have the solution x star is equal to b, that is the location

at J is minima. So, this let x star be the point where J is minimum. And d k is the error;

that means, we considered a guess value x k or kth iterations value x k d k is the error

which is x k minus x star.

The residual is defined as b minus A x k, if x k is equal to x star we reach the right value

b minus Ax is equal to 0. So, residual is 0, till it is not reached this is the non-zero value

and we define residual  is  b minus Ax k or this  is equal to b into A into d k. Why?

Because b minus Ax k is equal to b minus A x k minus b minus Ax star, because this is 0.

So, this is residual is if there is a 1 2 sorry (Refer Time: 03:45) (Refer Time: 03:53) there

is a small sign convention, small sign convention issue r k is b minus A x k and this is; so

let us define this is equal to x star minus x, this is minus d k, then it should come out.

So, this is minus of A into x k minus x star which is A into d k. So, let us define minus d

k is x k minus x star. New iteration guess will be updated as x k plus 1 is equal to x k



plus alpha k into minus gradient of J x is equal to x k. So, it started with a value of x k,

and we will update it to the new iteration x k plus 1. And this is how because we are also

when we are thinking of solving x is equal to b, we are also trying to find out the minima

of J. So, you should go along minus grad J x k and we found out there is a parameter

alpha k by which we should go in that direction.

(Refer Slide Time: 05:08)

So, I have J x is equal to half of x transpose Ax minus b, grad J is equal to Ax minus b; as

A is a symmetric matrix. X k plus 1 is equal to alpha k into minus grad J of x is equal to

x k which is evaluated direct steps in that earlier. And minus grad J is b grad J is Ax

minus b. So, minus grad J is grad J is Ax minus b therefore, minus grad J is b minus Ax.

So, x k plus 1 into alpha k into b minus Ax k and we have defined b minus Ax k as r k.

So, this is x k plus 1 is equal to x k into x k x k plus 1 is equal to x k plus alpha k r k.

R k is the same vector as the vector direction as the same vector in the direction v, r k

and v are same. Because we have written earlier v is equal to minus grad J, now we can

see that v is the same as r k. So, I have seen that alpha is equal to v if v is minus grad J

now we have seen that minus grad J is r k. So, r k and v are same alpha is equal to v

transpose b minus Ax k v transpose A v. So, we will get alpha is equal to r k transpose r k

and v are same b minus Ax k by r k transpose A r k which is alpha transpose r k into r k

transpose A r k.



(Refer Slide Time: 06:44)

And there is one observation which is r k and r k plus 1 are orthogonal. Why? Because,

grad J is the direction in which J reduces fastest, grad J is perpendicular to the J contour

where it has evaluated. Now, we move till J is minima or grad J this is tangential to J

contour to tangential to J contour at x k plus 1. This is x k plus 1. The new direction is

minus gradient of J x at x k plus 1 is perpendicular to the tangent. So, this grad J x k and

grad J x k plus 1 must be perpendicular to each other. Therefore, r k and r k plus 1 are

orthogonal vectors. So, nevertheless we found out that for one particular iteration how to

find out alpha k.

So, the steepest descent method will be start with one guess value x 0, and then do an

iteration k is equal to 0 1 2 until it converges. Compute r k is equal to b minus Ax k

compute alpha k which is our k transpose r k by r k transpose A r k. Update x k plus 1 is

equal to x k plus alpha k r k, and check if r k is less than an epsilon is the small value if.

If the residual b minus A i have to see whether b minus Ax is equal to 0, if b minus Ax is

a very small value then, sorry if not a very small value, if it is a very small value then it

is iterated. If it is not a very small value, then set k is equal to k plus 1 and go to the 2

and do the try for the convergence of the iterations.

If else if this value is very small r k is a very small number, then you say that iterations

are  converging you have  reached  the  right  solution.  So,  this  is  roughly  the  steepest

descent algorithm what we discussed here, and for a symmetric positive definite matrix,



we can utilize  this  the irrespective  of the way it  has been represented as a diagonal

dominant matrix or not only, only we have to see that this matrix is symmetric as well as

positive definite and we can utilize this method. This is in general a faster method for

symmetric  positive,  definite  matrix  this  is  a  faster  method,  then  up to  Gauss Siedel,

Gauss Seidel SOR or Jacobi method.

However, when we look into this method we see that if we try to think do a computer

program here, there are 2 matrix vector multiplication here. A into x and A into r. So, if I

have a million by 10 to the power 6 by 10 to the power 6 matrix. Each of these steps

needs multiplication with each element of the matrix with the vector each component of

the vector. So, in a sense 10 to the power 6 into 10 to the power 6 multiplications are

needed. Each row needs 10 to the power 6 multiplications and they are 10 to the power 6

(Refer Time: 10:48). 

So, this particular method needs in Gauss Seidel in each iteration you only have to do

one Ax multiplication; because x i is equal to b minus sum of A i ij x j at the older value

except the diagonal term. So, there is only one matrix vector multiplication. There are 2

matrix vector multiplication. So, if I try to do a computer program; write a computer

program out of it, though the number of steps will be less than Gauss Seidel; however,

the  calculations  will  be way high for  large  matrices  because  they are  doing in  each

iteration the calculations will be very high for the large matrices. Because they are doing

lot  of the Gauss Seidel  is  doing only once matrix  vector  multiplication whereas,  the

steepest descent will do it twice. So, you need to modify this algorithm.

So, you seen that there are 2 matrix vector multiplications and 2 vector-vector product

vector-vector is r k transpose r k and r k transpose A r k which is another again another

vector is that vector-vector product. However, they are less time consuming. Because if

there are 10 to the power 6 rows there then only 10 to the power 6 operations are there.

Our matrix  vector  is  10 to  the power 6 into 10 to the power 6 10 to  the power 12

operations are; there is a very computationally costly operation if there is a matrix vector

multiplication it is done twice.

So,  we  have  to  see  how can  we  reduce  the  cost  of  the  computation  or  number  of

operations. How can we improve the algorithm little bit better so that you can at least

avoid one matrix vector multiplication here so that for million by million matrix 10 to the



power  12  floating  point  operations  are  saved,  here  we  can  do  one  matrix  vector

multiplications here? So, you have to look into some modifications was some possible

modifications  into the steepest descent method,  before we proposed an algorithm for

computer programs.

(Refer Slide Time: 13:00)

So, the idea is again if I go back to the previous slide, that every why I need 2 matrix

vector multiplication,  one is needed to find alpha another is needed to find that. And

every time we need to do one matrix vector multiplication to find the updated value of r,

r k is equal to b minus Ax. Once we update x in to a matrix vector multiplication here.

That is actually replaced here updating r k plus 1 is equal to r k plus 1 is equal to b minus

Ax k plus 1; which is b minus Ax k alpha k r k. This b minus Ax k alpha k A r k that is r

k minus alpha k A r k. And if I again I go back to the previous slide, A r k is needed also

for computing of alpha k plus 1.

So,  if  r  k  plus  1  can  be  computed  using  A r  k  then  this  is  the  only  matrix  vector

multiplication  which  is  common both to  calculation  of  r  k  plus  1  as  well  as  to  the

computation of alpha k. And in that light will try to modify it; will see that this is also

needed for computing alpha k. So, while computing alpha k will store a A r k and you

will utilize this for updating r k plus 1.



(Refer Slide Time: 14:53)

The final steepest descent algorithm method algorithm will be start with a gaze value of

x is equal to x 0, compute b minus Ax and r is equal to b minus Ax and define a new

variable  p which is  A r;  p will  be utilized  later. And until  convergence;  that  means,

convergence means that until r is less than epsilon. Epsilon is a very small number; do

compute alpha which is r transpose r into r transpose p.

So, alpha is equal to r transpose r r transpose A r, and now A r has been substituted by p.

Update x is equal to this is because the same variable x which is overwritten as x is equal

to x plus alpha at that is why we have written x arrow is equal to x plus alpha r. This is

the way to write something which is getting overwritten. Update x is equal to x as x plus

alpha update r. So, r k plus 1 is equal to r k minus alpha k A r evaluated at kth level. So,

this is r k minus alpha k p k.

So,  update  r  is  equal  to  r  minus  alpha  p  compute  p  is  equal  to  A r,  and  then  if

convergence is not done end do means you again come back here, and further with this

the new value of p compute alpha, update x update r and repeat this loop until you see

that r is less than mod r is less than epsilon or convergence has been achieved. So, this is

the steepest descent method algorithm, and this is applicable only for A symmetric, what

happens if A is not symmetric positive definite, then the problem we are solving in this

problem what we are solving here is not finding x is equal to b solving or J is minima.

The problem we are  solving  is  not  J  is  minimize  not  now solving  x  is  equal  to  be



something different; is if it is not symmetric we are solving half of A plus A transpose x

is equal to b a different problem.

So, we are trying to find out minima of something which is not Ax is solving x is equal

to b; however, were convergence is based on mod r is less than epsilon. So, either it will

not converge, but if it converges then it will take us to the same solution that mod r is

less than epsilon; so, x is equal to b; so, in case the matrix is not symmetric or matrix is

little not the asymmetricity is not very high. 

A i k is probably A k i plus a small number. In that case it still converges, but it takes lot

of lot many iteration does not take less number of iterations. Because we are not using

the right solution algorithm for that cases; however, if only if the matrix is symmetric

positive  definite,  then  using  this  method  is  advantageous  in  terms  that  this  the

formulation is complicated one program is also probably a little complicated than the

Gauss Seidel method; however, this is advantageous because it is take times. The number

of  steps  are  small  number  of  iterations  are  small  calculations  in  each  iteration  is

comparable to Gauss Seidel.

So, overall computational cost is less if we apply this method. Only the matrix if the

matrix  is  symmetric  positive  definite,  then application  of this  method is  worthwhile.

Otherwise it might give us the right result because we are looking for these criteria that

mod r less than epsilon; that means, b minus perhaps Ax is less than epsilon. We are

looking into this right in here. So, it might you if it converges it will give us right it

shows that it will take as Ax is equal to b location. But it can take a very high number of

iterations in the matrix is not symmetric positive definite.

So, this  if  I  have a symmetric  positive definite  matrix,  this  is  the algorithm through

which will we will see later like Gauss Seidel have or SOR how a computer program can

be developed. And, we can also demonstrate that the number of iterations and as well as

computational time is much smaller than Gauss Seidel or Jacobi or SOR method for a

symmetric positive definite matrix.

So, we will see in later class that how we can develop a computer program using this.

And interestingly this is only one matrix (Refer Time: 20:09) in multiplication, earlier we

had 2 matrix vector multiplication. So, one has been reduced there is only one matrix

vector multiplication here.



(Refer Slide Time: 20:17)

Now we need to look into the convergence of this method; that is for 2-D I can give you

some  visualization  that  iteratively  we  if  we  change  the  such  direction  you  should

approach  to  the  J  minima  or  this  method  should  converge.  Now,  there  are  certain

theorems and analysis which can show that the error convergence means the error will be

in smaller x minus x star is smaller than is the error x k minus x star this error will

finally, reduce to a very small number given certain conditions.

 That let A be the theorem for convergence tells that let A be and SPD matrix, that is a

symmetric positive definite matrix, then the A norm of the error vector which is x k

minus x star, x star is the exact solution of x is equal to b. Generated by steepest descent

algorithm satisfy the relation mod d k plus 1 A norm; A norm of any vector is defined as

E transpose AE. So, a d k plus 1 transpose d k plus, this is basically d, I am sorry, where

is the (Refer Time: 21:32) d k plus 1 transpose A A norm of d k plus 1, or let us take d k,

it is A norm is basically given as d k transpose A d k.

This norm is satisfy the relation is less than equal to lambda max minus lambda min

divided by lambda max plus lambda mean of d k; so, if we have any always d k plus 1 is

less than d k A. The error x k minus x star at any iteration is always less than the error in

the previous iteration therefore, it  should converge to a finally, this error should be a

small  value  and it  should converge  to  a  small  number  should  converge  to  the  right

solution.



However, the rate of convergence here depends on not on the spectral radius rather the

maximum  and  minimum  lambda.  So,  the  relation  the  difference  of  the  maximum

eigenvalue and minimum eigenvalue of this lambda max and lambda mean are there is

no  iteration  matrix  Are  the  eigenvalues  of  the  matrix  A only. So,  it  depends on the

eigenvalues of the matrix A; so, this algorithm and this shows that this algorithm will

converge  for  any  Gauss  value  x  0,  because  this  is  always  a  number  less  than  1.

Therefore, d k plus 1 is always error is always reducing. 

So, finally, the error should go down it will with start with some value it will keep on the

magnitude modulus of error is always reduced reducing. So, it will be a small number

and this is this is a positive number right, because A is a SPD, this is always greater than

0 as A is SPD. So, this number will be greater than 0 and reducing; that means, that if

this is d k A and this is k this will asymptotically approach 0. It will never be exactly 0 it

will be always greater than 0, but it will be a very small number and then it will be

finally 0. So, this algorithm will converge for any initial guess x 0.

(Refer Slide Time: 24:02)

This is a mistake here and this should be d k. I should correct it in the original notes also.

This is d k. So, you can see d k plus 1, you know, means lambda max minus lambda

mean of by lambda max plus lambda mean of d k; which is lambda max by lambda mean

minus 1 by lambda max plus lambda min plus 1 of d k. And spectral condition number, I

have defined it earlier of any matrix is the ratio of lambda max and lambda mean. Now



we have said that as small as the condition number therefore, lambda max and lambda

means are closer it is easier good for matrix solver.

So, you are also seeing here, and this is always greater than; so, basically this is absolute

all  these  are  absolute  values.  So,  this  is  always greater  than 1 all  this  should  be an

absolute value. So, this is always greater than equal to 1. So, as this value is close to 1,

this number is smaller; is 1.000, it is very small number. So, in very few steps the d k

plus 1, the air should approach 0. So, if convergence spectral radius is the convergence

rate depends on the spectral condition number, spectral condition number low, spectral

condition number; that means faster convergence.

And  when  discussing  about  condition  number,  we  have  discussed  that  that  if  the

condition number is small, then the convergence is faster. If lambda max and lambda min

are closer the condition number are small convergence is faster. And we can see if this

number is smaller we will reach the convergence faster. So, low condition number will

give a faster convergence here. So, this is the first time we discussed earlier discussed

about condition number we are seeing one example of condition number in first in the

rate  of convergence of the own matrix  particular  matrix  solver  which is  the steepest

descent method matrix solver, ok.

So, this method will converge; that means, we started with some geometric functional,

now we  can  see  that  once  we  have  derived  the  algorithm.  This  algorithm  converts

starting with any guess value x 0, this algorithm should take us to the convert solution of

Ax is  equal  to  b.  And that  is  only  for  symmetric  positive  definite  matrix.  Now the

question is that the entire exercise is only devoted for symmetric positive definite matrix.

A matrix may not be symmetric in reality we deal with number of cases where we get

asymmetric matrices. For example, if we think of a finite difference equation that we are

discussing  earlier,  and  if  we  use  non  uniform  grid  spacing  the  matrix  will  be  a

symmetric.

So, how can we modify this equation for an asymmetric matrix. As well as in a general

case there can be negative definite matrix; for positive definite matrix, there is a solution

if the matrix is not positive definite. If there is a negative eigenvalue, what is how to

solve  this  matrix?  This  method does  not  cover  those  matrices  therefore,  it  still  now



restricted only to a closed class of method a small class of method we use symmetric

positive definite.

Now, our next goal will be if we can extend this method for general matrices which are

not symmetric and non-positive definite matrix. And what we will discuss for that there

is called general projection methods. Instead of having a method for searching through

gradient  search  approaching  the  minimum value  of  a  functional,  will  see  a  g  mode

generalized method were probably the functionalism is little different; we are trying to

find out minima of some other function, but solving a matrix which is not symmetric or

which may not be positive definite also. Extension of this method will take us to general

projection methods; which can solve a larger class of matrices. We will see that in the

next classes.

Thank you.


