Matrix Solvers
Prof. Somnath Roy
Department of Mechanical Engineering
Indian Institute of Technology, Kharagpur

Lecture - 42
Developing Computer Programs for Projection Based Methods
Welcome. We are continuing our discussion on Computer Programming for the iterative
solvers. In the last session we have looked into Jacobi solvers and we will see how this
can be modified into Gauss-Seidel solvers. The examples will be given on similar
problem which you are considering in during Jacobi solvers, there is square block in
which we have to solve Laplacian 2-D Laplacian equation and all the boundary

conditions are specified as the essential boundary conditions there.

(Refer Slide Time: 00:49)

PRI AL OB

Gauss-Seidel

Matrix equation; Ax=h

Ais diagonally dominant

i-th row of the matrix represents the equation: Z “:,-", =b
J=l

Now, lef us assume a guess solution ; x=x(®

"] b~) apit -) a
Fork=0,12.... Update x as Jr:"'-J’:. 20 e Z Z

a i
" @

. () _ (k)|
Til convergence: mf'x‘r‘f X “:-“

. - NPTELONLINE
IIT KHARAGPUR CERTIFICATION COURSES

So, we look into the Gauss-Seidel iterative method. The matrix equation is very similar
as the Jacobi method except look into at x, we have to solve matrix Ax is equal to B. Ais

diagonally dominant.

You have to do the exactly same thing that start with the gauss value x is equal to x 0 and
then, update Ax; but this update instead of what we have done in Jacobi, what will
presently do in Gauss-Seidel is that for the upper row terms, for the terms for that which
you already have an updated value of x available, we use the updated values. And for the

terms in the lower rows, where the x is till the guess value that has not been updated, we

use the guess values or what we can see say that for getting updated value of one

particular element of the x matrix, we use the most recent values of all other x’s.

So, in a sense programming will be actually easy because we do not have to use the old
value at during the iterations. It is will update the one variable and that will be used by in
subsequent iterations. So, we will look into it. I will show you couple of examples (Refer
Time: 02:14) ¢ code which will discuss right now and then, we will see a Fortran Code,

where much simpler implementation has been done.

Well. So, x is updated like that and then, till convergence we have to see that the
maximum value of xk minus xk plus 1, the difference of any element of x in 2 iteration
levels and the maximum of that difference, maximum the absolute value of the difference
is less than the small number epsilon. In a sense, it is very same as very much similar to

Jacobi method.

(Refer Slide Time: 02:53)

P I 4SSt ED

Computer programming for Gauss Seidel method

1. Sum of all the terms in each row - Looping the sum over all rows to
update each elements of vector x

2. Looping this update for large times till convergence

3. New x will be computed using most updated available values of x

4. Old values of x are used only for checking convergence

_ ! NPTEL ONLINE
IITKHARAGPUR CERTIFICATION COURSES

And for programming also we have to sum of find sum of all terms in each row and loop
over sum of all rows to update each element of vector x. So, there is a lot of summation
operation, summation in each row for finding that particular expression; summation on
each row for finding this particular expression, this summation. As well as there is this is
summed over one particular 1 and similarly for all 1’s for all the rows we have to do this

summation.

So, there are basically 2 rows of summations here and then, this has to be looked for a
large value of k till we get convergence and the new x which is computed will be will use
for computing of new in this new x, we will use the updated available values of x.
However, the older x has to be stored because we have to check the difference from the
older value of x and then, the new value of x and what is the maximum of that absolute

difference for checking the convergence.

(Refer Slide Time: 04:01)

L]
[——
#inc ludecstaio. hx
#includexstdlib.hx
rincludemath .y
Fincludestine.ho
int main(}{

int w;
printf(“Enter the size of the meshi'n");
scanf("%d® 4r);

Reii; // Indexing for each point//

int m

UL N M
int afn][n] ;double b[n];double xO[n];deuble xl[n];
int 1§,k count;double !u‘.(llHIM,(I'fOI':

fordjjel: jielh-13;§je){

) NPTEL ONLINE
IIT KHARAGPUR CERTIFICATION COURSES

So, we will quickly look into a Gauss-Seidel code. So, it starts with all including all the
header and time files and then, there is a mesh which is which basically gives pointer of
1j value in a Cartesian mesh to one particular row of the matrix equation. And now, what

we are doing here?

(Refer Slide Time: 04:26)

nﬂuﬂl-:: ine.
int maing}

int n;
pri mi\(“Enter the size of the meshiin");
scanf("%d" dn);

forgatadls

wEsH(1i1E1313i"Re11; 7/ Indexing for each point//

m n

m A[’\ [n];double bin];double xO[n]; nwnle aifn]:
int 1,k count;double sum, o|u|lm errar

:nr?:g fanyis 5
o | -
1(’r" i

HOEY
i

forfl: i i
Rl

gl

‘} WSNE\ +1]] { entries for each matrix Tocation (non-zero)//

{safii-1]

P NPTEL ONLINE
IITKHARAGPUR CERTIFICATION COURSES

We are, so, what we are we have to here is that write down the initialize everything with
the 0 and then, put the right boundary condition define the right coefficient of matrix A,
it is inter diagonal matrix with the diagonal term minus 4 and all of diagonal 0 except
few terms which are 1 and substitute the values of A for the boundary conditions and

then, put the boundary conditions in the B matrix and so we get A and B fixed here.

(Refer Slide Time: 05:07)

L

[

s

g'{'ﬁill niities

for(ksd;kanjkes){ //mnitial values of x//
wl[k]=0;

printf(“Enter the desired accuracy:®); //specify epsilion
scanf (N1 depsilon);

countsd;

errors*epsilon;

clock_t start,end;

double cputime;

startsclock(); ;
iu'll(ermr:-eps\lm &6 counec15003{ //error: an(i)-ulkel)s 1t epsi

for(ksd;kaniks+){ //storing the updated value as new value
;D[k]-xl[k]:

) NPTEL ONLINE
IIT KHARAGPUR CERTIFICATION COURSES

Then, we start with we have to give the desired value of accuracy which is epsilon that

the user gives a gives it as a input and the program reads this value. The initial value is x

is equal to 0 and with x is equal to all the x’s are 0, x 0. So, x 0 which is given as x 1, the
guess value is defined as x 1 and sorry the updated value is defined as x 1 and guess

value is x 0 but we are initializing updated value x 1 is equal to 0.

Later, we will change updated we assign the updated value to the guess value. So, the
initial gauss value become 0 and till we have an error which is greater than epsilon,
initially, we have given error defined error to be twice of epsilon and during calculation
we will find out a error, till error is greater than epsilon and till we have less than 1500

iterations. We follow these loops.

(Refer Slide Time: 06:08)

ECE

b by

for(ksd;kanjkes){ //mnitial values of w//
wl[k]=d;

printf(“Enter the desired accuracy:®); //specify epsilion
scanf (K1 depsilon);

countsd;

errora*epsilon;

clockt start,end;

double cputime;

start=clock(};

while(errorsepsilon &8 count<1500){ //error: ani)-nu(kel)s .11, apsi

for(ksd;kamiks+){ //storing the updated value as new value
50[\}-:[[\,‘:

or
sumssumsA (1113101 [§] //sum of ax for each non-diagonal term//
nrgj-ivl:qu;]'.')t_

3u--su~-h‘].] *ullj1//x0 and x1 are same for ater rows//

NPTEL ONLINE
IITKHARAGPUR CERTIFICATION COURSES

cae'd

So and there is there are some comments for checking the computational time required
for that. So, what you are doing here is that we are doing a sum for each sum of Ax for
each non diagonal term until j is less than i. So, for all the non diagonal terms above the
particular row is summed and this is total sum this is for one particular value of i. So,
there is a loop over j; j is equal to 1; j is equal to O; j is less than i1 and there is another

loop j is equal to i to j is less than n.

(Refer Slide Time: 06:53)

LT
b by

printf("Enter the desired accuracy:™); //specify epsilion
scanf (K1 Lepsilon);

countsd;

errorsl*epsilon;

clock_t start,end;

double cputime;

starteclock(); .
whileerrorsepsilon &6 count<15003{ //error: ax(ki=x{kel)> .1t. epsi

for(ksd;kaniks+){ //storing the updated value as new value
w0 (k) =xd[k];

for{isd;im;iee}{
sunsd;

v}
j Jxl'_j] Jisum of ax for each non-diagonal term//

i1//x0 and x1 are same for ater rows//

Mlillil:

errorsfabs(x1(2)-x0[0]);
for{ksl;kamkes){

NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES
. caed

So, this is sum in a particular sum for a particular row and this sum is done for all the
rows and we can check that when doing this sum reducing x 1; x 1 is the updated most
updated value. For the rows above this one particular row x 1 is the updated value during
this iteration. For the rows below this particular row x 1 is the value which has been

updated in the last iterations which has gone as the guess value now.

So, when you calculate updating one particular element of x as x 1, we are using all the
recent, last recent available values or last updated values as the guess values. We are not
using the guess values, which is the updated values in the last iterations. Whatever has
been updated during this iteration is all being used as guess value and we are we

calculate B is equal to x 1 1 is equal to b minus sum by A1 i.

(Refer Slide Time: 07:47)

[
clock_t start,end;
double cputime;
starteclock(); "
while(errorsensilon &8 count<1500){ /ferrar: an(kj=niksl)s .Tt. epsi

for(ksd;kan;ke+}{ //Storing the updated value as mew value
O[k]=x1[k];

a1(3)//x0 and x1 are same for ater rows//

il[i]-(h[h'-wl].n’A:"]i‘]:

errorafabs(x1[0]-x0[0]);
fnruc-l;ktn‘\cr.,[.
if(errorafabs(xl [k]-x0{k])) {errorsfabs (x[k1-x0[k1}:}// Calculation of error

countre;

t
endsc Tock ()

-~ NPTEL ONLINE
IIT KHARAGPUR CERTIFICATION COURSES

caed

So, this is done for one particular x 1 and similar and then, we calculate what is error
what is the maximum value of x 1 minus x O for all the elements and check that check we
will check what is the value of error and well like error is greater than epsilon, this loop
will continue that means, count will be added by plus 1 and the control will be shifted

here.

So, for the other values of k, for the other values like for the higher values of iteration
count is less than 1500 this will continuing iterating till it gives epsilon error is less than
epsilon. Error is less than epsilon is defined as something say 10 to the power minus 8,

we get error is less than 10 to the power minus 8.

The only difference is if we look into Jacobi, there we have used x 0, but in Gauss-Seidel
we are using x 1 which is the most updated value. So, it will also be apparent that as we
using updated value using the iterations, the convergence will be faster and we have
looked into convergence rate, convergence factor of the matrices and observed that
Gauss-Seidel has the faster convergence rate then Jacobi will demonstrate it via using

these codes also.

(Refer Slide Time: 09:17)

FI_

uccessive Over Relaxation

Matrix equation: Ax=b

Ais diagonally dominant

i-th row of the matrix represents the eguation: Z ax =b
J=l

Now, let us assume a guess solution ; x-x"

l Il'\l '[113
Fork-0,12....Updateras ., " 2 Z” 1 - B B
L sk +w(fl - }
I'.n
7 =
Till convergence: “‘E"“J:“‘-‘r” ”‘“ 2
sor code

NPTEL ONLINE

IITKHARAGPUR ‘ CERTIFICATION COURSES

So, the next method is what is called the successive over relaxation method. In
successive over relaxation method, everything is same except the x variable is not
updated during the iteration directly as a Gauss-Seidel; rather we get a semi iterate semi
guess semi level guess value at using Gauss-Seidel which is x k plus 1 star which is not
the exact iteration value, but it is a semi iterated value and will see that the difference
between x k plus 1 minus the old x k. So, this is difference between x k plus 1; this is x k

plus 1 star.

This x k plus 1 star minus x k; what is this difference and we multiply this difference by
omega which is greater than 1 for SOR. For successive over relaxation, the value of
omega is greater than 1. So, increase the if x k plus 1 star is the updated value, we
increase the iteration value to x k plus 1 star, from x k plus 1 star to x k plus 1 by

multiplying it with the value greater than 1.

(Refer Slide Time: 10:43)

A

b b

-
Fincludecstdio hx
#includecstd]ib. hx

¥ emath. o
#INE Vuda<ting.
int main(H

int W} .
pnnn\s'(nur the size of the meshiin®);
scanf(“5d",)

int wsk{r] (r];
nt 11,715,
]Jlt e

int n;

mehth;
int A[n][n];double b[n]);double wO[n];deuble x[n]:
int 1.§,k,count; deuble :u-.ennlm.error:dnubfe LA

for{jjal; jiadR-13; jied{ L ; “

TN LUTIVETNSSTILE, i I T T [

NPTEL ONLINE

IITKHARAGPUR | CERTIFICATION COURSES

So, the marching towards convergence is faster and the code is also very similar exactly

similar steps are followed until we do the updates step.

(Refer Slide Time: 10:45)

A
=T

b[i]=0;
}[]

&

MESH(11
A b

MESH{ 11

L)
{uesh

1
1t

1§i1]s1;
o
1 'n' wl;
i ST EY
11N 1=

fortistyim el
ifumh]-—am 10110}
double Tb‘Tt,H;‘Tr.'

printf("Enter the value of tempertaure at bottom boundary:in");
l:l_nf"}”'_&

Tue of tempertaure at top boundaryiin");
. 1La

W"m’('!mer the value of tempertaure at left boundary:in");
scanf (%11 &11); .
print{{"Enter the value of tempertaure at right boundary:\n);
scanf (K14 drr);

¥
for(jjs0; i jjeed{ k) _ ()
DOMEBAe] 131114711 T

or{j ju0; jj ki jjeedl . b

TIT LUTTIVETYETICE, r [T T |'

sor code

NPTEL ONLINE

IITKHARAGPUR | CERTIFICATION COURSES

(Refer Slide Time: 10:47)

LS

for (el kanjkee){
&[] =0;

intf(“Inter m nu red accuracy:®};
mnf} X1F* Lapy
print g E-mr [hl u e of Wi
scanf(

countsd;

errorel*epsilon;

clock_t seart end;

double CWI‘H.

startsclock();

shiTe(errorsepsilon 4 countelf0){

for (el kan;kee) {

HAETOH
; (k]=x[k]
for(istiim;ie}{
orcieds jei e}t k1) _)
1un-suuu:i!|11]‘x[j}:])
or{jeielyjam; josd { L ’ ol
. £ E]
mr L-U[IVGIHUI ee, F [T T [
sor code

_ NPTEL ONLINE
IITKHARAGPUR CERTIFICATION COURSES

;[\] (L-wh*xlilow® (bl)-smum)/a[i1[i1:// 508 step

arrorsfabs(x[6]-50(0]};
for(kelikon;kes,
if[.fl’ﬂ! Fn;[\.k] wO{k])){errorsfabs(ak]-w0lk]); }

:"Dr" nif ("%d N1fn",count,error);®/

I3
enda ‘] Tacl
cputines (Edwﬂe)(end -5tar :]; LGOS _PER_SEC;
printf{"times X1fin

for (had jkoon ke 1{

Final] \cl] A1k x (k1) }

pr\nn‘s
printf{*¥d %1Fin",count, error);
)| Il i
;erurn o ! '_.\.’\ I)
{ =2 ™~
m \.ur:vclgcl | ==} i [T T [
sor code

NPTEL ONLINE

IIT KHARAGPUR CERTIFICATION COURSES

In the update step, we use the fact that the updated x is 1 minus omega into old x plus

omega into the changes into b 1 minus sum by A1 i.

So, this update statement is different apart from that the entire code is similar. So, what
we can do? We can connect to a server and see how these codes are behaving for one at
least for one particular problem and then, will move to the Steepest Descent type of

methods.

(Refer Slide Time: 11:33)

Successive Over Relaxalion

i

wresents the equation: Z% =4

bass solution : x=x®

e

T

1T KHARAGPUR

So, here I am connected to a server which has C and FORTRAN compilers, I will show
some examples where FORTRAN code and this is my b vector. I am solving x is equal to

b. This is my b vector; sorry.

(Refer Slide Time: 11:51)

AN - e X ." t
Y T — =cs =
: e e g L x 3 =
p— -
verer=, 1 tos 18000 Jul 30 °

i g0 | Successive Over Relaxation

untos cen 590 Jul ¥
| — entos con 433 Jul 30
) Jul X ' o
2 centes contos w06 w1 30 presents fhe equation: Z“r", =h

contos contos 1B0DOD00 Jul 30 bass solulion & p=x®

ST I e e L
st structured]$ cd test nptelf] = Yar ew™ 1)
[

T EHARAGPUR

Campors hagamoy e basae
e

[

Blo

(Refer Slide Time: 12:05)

1 centos centos 25% Jul 30 7

| ontos contes 833 a1 3| Successive Over Relaxation

1 contos centos 0 Jul 3G

centos centos 4006 Jul 30

BO00000 Jul 30

13041 ul 30 presents the equafion: Za b

bass solution : x=x™

l\-idu"' '2‘:—%"

L e el

IT KHARAGPUR

e
[1Id]
W
" -,
. . [) o 7 5 S
| — O L AENPEAOD N AV
9 e b
i ;

Successive Over Relaxalion

resants the equafion: 2,4,%, b,

g bass solution : x=x™
' S s

L e el

IT KHARAGPUR

So, b i this is my what happened? (Refer Time: 12:18).

(Refer Slide Time: 12:15)

BEn Y u ® r—
Bl o v e e o s S Bl 8 P
o B - - | N

. . [) i T 3 T
| — O 8L AN NTEAOD NV

s P T T L]

Successive Over Relaxation

oln,dat
solution 2
wesents the equation: 24,5, =b,
solist fon i

test_nptel bass solution : x=x™

D e

sl g™)

IT KHARAGPUR

So, I have a small matrix generation code which I will run to generate the matrix and this

code generates both a, a for x is equal to b; both a and b for a this is for a 3-D Laplacian

equation.

(Refer Slide Time: 12:45)

Successive Over Relaxalion

1034 il 30
2580 Jul 3¢

33 Jal X

i

) Jul 3¢
toa 1EO0OB00 Jul 30 wesents the equation: Z“J‘T;-h'
I

4056 Jul 31 bass solution : r=x®

” h-f_;«r."' -i;w-'

13172 1 3
S8

T PR

So, if I look into my b vec; I will look into the b vector.

(Refer Slide Time: 12:51)

LN "
Ry T
Lol
L L T

1 eontes contos
1 eantes
1 eontes
1 centen cor

1 eontos conto
2 centos contos

1 centos centos

v

#33 Jul X

00 Jul 3¢

ared]§ vi bvec

ared]§ . fa.out]

e e T

; .‘!:w_.':m =

1034 Jul 30 °

2580 Jul 30

0 Jul 30

4006 Jul 31

13172 Jul 31

Successive Over Relaxalion

i

esents the equation: 24,4, =

bass solution : x=x®

b-Sar-Fa
RS i A

a,

(Refer Slide Time: 12:59)

L)

AE [17]

I S
N e e
— U AL AENCFRODDN WY
B prep—

{300t

I eentos centos

B | i oo st

1 conten contos
1 contos contos
1 conten contos

1 eontes contos

contos

1034 Jul 30 °
2580 Jul 30

$33 Jul X

Successive Over Relaxalion

]
wesents the equation: 24,7, =b,
4

bass solution : x=x®

(Refer Slide Time: 13:07)

i o - —
) [) .' 7 5 S

—— AL AERPE AL N AV

. === | D aima

Successive Over Relaxalion

wesents the equation: 24,5, =b,
]
bass solution : x=x®

b-Sar - La!
Fat B bl g0

NPTEL

IT KHARAGPUR CERTIFIC

ampora hapanng w ispae
e

e,

Blol

This has basically 100 1000 lines. Why should it be vi a matrix just one second.

(Refer Slide Time: 13:43)

- T i e temeinie -
)) [) v 7 T —E
— @0 0F WOF A DDY AW
B s (T

dinension a{1000, 1000),b{1000), ipoint {10, 10,
e Successive Over Relaxation

opan {1, file='amatiix,dat’,status="unknown'
1
| — == cpanlZ, Filus'DYector.dat’, statuss"nknow')
1,10
AN I»

i wresents fhe equation: 2,4, =
bass solution : x=x
h'}:a.r." Lo
a8 i . " - [=)
t structured]§ gfortran mat.f] 3 Rl A ewly™ -n)

& -

e NPTEL OHL
1T KHARAGPUR CERMIACATION COURS

(Refer Slide Time: 13:51)

e i o e e A -
© Dy — -
1 e e
| — 0L 8 NTE R DD OV
P D et
open (1, file=*amatrix.dat’,status="unknoun' "

opaniz, file='bvector.dat’,status='unknown’) Successive Over Relaxation
sl
10
kl)=(3-1)* (k=1)
wresants the equafion: 2,4,%, =

]
bass solution : x=x®

b-Sar - La!
Famif B bl)

et NPTEL ORLINE
T KHARAGPUR CERTIRCATION COURSES.

So, b vector should have 100 points or 1000 points only gfortran.

(Refer Slide Time: 14:07)

[TR Y W - n
= r‘m:w £t e i - . e - "
. - Tl
.) () A 7 - B
‘— BaLAFNrFALD N OV
b I T T ge

Successive Over Relaxalion

resents the equafion: 24,5, =,
1
bass solution : x=x™
h-Sai-Eai
T |

- NPTEL OMLINE
T KHARAGPUR CERTIFICATION COURSES

Wait will have to go to some.

(Refer Slide Time: 14:31)

Successive Over Relaxation

wesents the equation: 24,5, =b,
sctor.dat bags solution :x=x®

o) -};«,t"' -iﬂ:m'

L e eyt

NPTEL ONLINE
T KHARAGPUR CERTIFICATION I

So, I will take up b vector as well as a matrix which has g. So, b vector has 1353

columns; that means, the matrix is 1353 into 1353 matrix and the b is the 1353 into 1

vector.

(Refer Slide Time: 15:05)

TR dl —— i e & s
- e s of
- G, S o
X U e e o = o
) — O 80 BF &TE R LD N AV
o st vt

Successive Over Relaxalion

wesents fhe equafion: 24, =#,
=i
bass solution : x=x®

ot e ewlgl™)

NPTEL DHLINE
T KHARAGPUR CERTIFICATIC

So, if I compile Jacobi and run it, the dimension of the matrix is 1353, it is a square

matrix. So, I will giving 1 as the dimensional input.

(Refer Slide Time: 15:23)

ey |
™ e

WaLAEATr A DO N eV

] s

B emeal

And we can see that the iteration number 333 334, the error is reducing as a iteration
number is increasing and this will go for a large number of iterations we can find it out

more than few 1000 iterations we will go for.

So, here I am not given that the iteration count cannot be greater than 15000; 1500
because it is a large program and it will take lot more iteration to convert, right. Then,
takes the large number of iterations as evident and the value reduces and finally, it will

reduce below a small number.
(Refer Slide Time: 16:39)

. m |
B e e

WAL AFATE AR DO N AW
£ 0 e ot

So, it came to convergence when the error is less than 10 to the power minus 9 here and

it took 3287 iterations.

(Refer Slide Time: 16:49)

21 _now= (bl

So, if I look into the Jacobi code, I have specified epsilon. I am not(Refer Time: 16:55)
the epsilon from the user, but it is specified as 1 e 10 to the power the epsilon is specified
as 1 e 10 to the power minus 8. So, if the value is less than 10 to the power minus 8, the

iterations will be done.

(Refer Slide Time: 17:15)

U e
HALAFGWEFE A LD @Y
0 g ez P

), xLin), i1 in) , adiag (ni)

[cIsaLal 1l

And now we do the same thing using a Gauss-Seidel and the iteration level is same. So,

if I run the same code and this was 3000, more than 3000 steps.

(Refer Slide Time: 17:29)

B cimielo

If I run the small problem using Gauss-Seidel, again 1353 at the number of mesh points.

(Refer Slide Time: 17:33).

[~ EismL Al 10 afe)

And let us see how many iterations does it takes. So, it took 1640 iteration have the
number of iterations. The only change in Gauss-Seidel code is that when we are doing
this calculations of multiplying a with x, I am not using the older value of x, I am using

the most updated value of x. This is the most updated value of x here.

(Refer Slide Time: 18:35)

Eurs |
] Qo tvax o
real, allocatable, disension(: a,41 1
real, allocatable, diseasion(o, k1, adiag
i allocatable,disension(:) :: il
*) ‘enter dimenaion of a'
read (*,*)n
allocatadain,nd,alin,nl,bind, b1in), % (60, 2100, i1 i), adiag (nl b
open(l, ile="amatrix.dat’, status="'old")
apen (2, Eile="bvector dat' status="old")
do i=1,n
do j=l,n
read(l, *)aii, j)
and do
road (2, *)b{i)
and do
x(e)=0.0
ita=0
T itasitasl
Xerrormaie-lali
do i=1,n
a_x=0.0
=1,n ¥
iftj.ne.ira_x=a_x-ail,j)*xtj)
end do
&1 _piw= B {ihea_x)fail, i) L b
worror=abaix(i)-x1_new) 4 |y
XOETOIRAX=RAX (X0ITOIRAN, XOTTOE) /
x(i)=xl
and do I
weita(®, *) ermay, ity
if{xerromax,gt. le-B)gate T1
open (3, £ile="solution’, status="unknovm')
[centosdlocalhoat structured)$ vi facobi.f]

(Refer Slide Time: 18:39)

. RRREIRIEREES —
B e

Balspare Ao ev

S
xorror=abs(x1(i)-x1_nev)
XOETOIRAX=RAX (X0ETOIRAR, XOCTOL)

cioe Find now &
x1{i)=xl_now
and do
ecee End of iteration and new % update for individual equations eee

ccee Update x with newer values o e CECOLEEECOtOEE e
klii=xlii)
cooc Weite max error ab iteration muaber cocgocs ===

weite (%, *) 'Error=', xerrormay, 'Biteration

ecee For max error .gt. epal continue iteratiol T0 71 ceccecceces
if{xarcomax. -Blgate 1
weite(*,*) ‘eonvergence®

coec Open cutput file CEOEEEEECEEEeacs
open (11, file="soln.dat’, status="unknown')

ceee Welte x vector ¢ & o © Coee .
da i=1,n
weite(10,%) "% 4, x(i)

ond do Vo r

Closa all files ¢ ey GEeCEEeete: CEeg
clese (1)

closa |2} I

close(11)

itep

ond

"jacobi.f® BEL, 2500C

But if I look into the Jacobi, when I am using 2 x’s; one is the old x and other is the new

X.

(Refer Slide Time: 18:47)

T g |
1 e e
[

AERTR A LD WV

the afif) x(j) (L.ne.j): x{§) last iteration guess ccceccoe

and do
cece End of iteration and new x update for individual equations eccces

ceee Update x with nowsr values coccocoecoooroocoeoecooooeetoeoecoss
XGI=xl3)

[ew host atructured|$ vi ga.f

[~ CISaL Al 10 Ae)nn

And when I am updating x, I am finding out the new x based on the older value of x. I

am not using the most updated values of x ok.

(Refer Slide Time: 19:03)

e
o
HALARRFR A LO Y @Y
g tevan P
L, *)ali,)
ond &
road (2, *)b{L}
and do
X)=0.0
.
{ S F—
[eantoaflocalhost structured]$ vi adf

7 elsaLat 1l ate)

The Jacobi the Gauss-Seidel this is the update line in Gauss-Seidel and this is how it is

being updated x, finding out an x 1 new and b minus x by A1 1.

(Refer Slide Time: 19:29)

1 test_optel

[5_cismLal 1lafel F.

So, the same thing can be looked into an SOR, remember that it took around 1640

iterations for Jacobi; the same thing can be looked into an SOR.

(Refer Slide Time: 19:41)

B leimlgio -

And where there is a parameter alpha, x is equal to x old x plus new x minus old x into
alpha. So, alpha represents omega here and alpha we read from the, we has the SOR
value we read from the user. So, if we write the, if we run this code alpha may be we

give 1.3 as alpha.

(Refer Slide Time: 20:13)

e g
LN} LA LN W RN L
0

[~ cimL At 10 afe)

And see how does it convergence. So, it converges at 927 iterations where the j Gauss-
Seidel took 1640 iterations and Jacobi took 3400 iterations much larger number of
iterations. Now, if we know that there should be an optimum omega on which or
optimum SOR factor on which we should get the maximum convergence rate. So, at 1.1,

we are getting 9; 1.3 we got 9.27.
So, let us give alpha is equal to 1.6 and see if it still improves.

(Refer Slide Time: 21:09)

LA LU W N L
o

5 el al Irafe)

Now, we can see the radius run much more than 97 iterations and the values are actually
if I close it, the value is actually not reducing it. It has become a constant. So, the
solution is actually not converging with 1.6. So, you have run beyond the optimum SOR

value.

(Refer Slide Time: 22:01)

-
P e
Bahazsrrmsos ev

[ciNaL At 10 afe)

Let us run this with 1.4. Remember at 1.3, it was 927. See it is 760.

(Refer Slide Time: 22:23)

B e
HALAFBEE A DD Y @Y
a

k
|
Bl cimelo

It is improved than 1.3 and if you run it at 1.5 SOR 1.5, its 720 plus something at 1.4. It

goes to it is again does not converge.

(Refer Slide Time: 22:57)

P 4E st ED

So, and we can see that this is actually oscillating alpha is 2.38; then 1.7; then 1.19 and
then again goes to 2.38. If the equation system at all converges the not alpha the error
should always reduce, error should monotonically reduce, but it is not reducing. So, it is

not converging.

So, somewhere between 1.4 and 1.5 is the optimum SOR after which the equation the
system starts diverting. So, there is a value of omega which is greater than 1, for which
we get the minimum number of iterations. This things can be verified by numerical
experiments like this you run with different values of omega and ¢ where you are getting
the best performance or you have to look into the iteration matrix for SOR, the g matrix
and spectral radius and from there, you can or the spectral radius of the Jacobi matrix
SOR Gauss-Seidel matrix. Using that spectral radius, you can specify what is the
optimum value of omega, there is a very nice formula for that, we have discussed it

earlier.

So, now will also look on the other programming of few other methods and quickly go

on Computer Programming for Steepest Descent Method.

(Refer Slide Time: 24:29)

Steepest Descent Method - Operational steps

1. Chose x@

2.Fork=0,2....00
SV eoree ,4“:;,_ - Matrix vector multplication
- vector-vector dot product

4, Compute P o

5. Update xi*i=xb Fasips

* Matrix vector multiplication,
vector-vector dot product

6. If | M¥|<gset k=k+1, goto 2, else iterations converged

NPTEL ONLINE

IITKHARAGPUR ‘ CERTIFICATION COURSES

So, what is the Steepest Descent Algorithm? That is you start with the guess value x 0
then, k is for different iteration level; k is equal to 0, 1, 2. Compute rk is equal to b minus
Ax k. Then, compute a parameter alpha which is rk transpose rk dot product between the
r and rk transpose Ar k and update x as xk plus 1 is xk plus alpha k rk and if rk is less
than epsilon set, k is equal to sorry; if rk is greater than epsilon, if rk is it is not less than
if rk is greater than epsilon, if the value is greater than something, then go to 2 and repeat

this loop else you will say that the iteration are converged.

So, now we will see how we can write a computer program for this. So, what are the
steps involved in major computation operational steps? There is a matrix vector
multiplication here. A has to be multiplied with x. There is a vector-vector multiplication
here, r has to be dotted there is a dot product of r and r and there is another matrix x
vector multiplication which is A r and then a dot product of the resulted vector with the

vector r.

So, there are 3 vector-vector; 2 vector-vector multiplication and 2 matrix vector
multiplications and major operational steps will be carrying out this multiplication
because A into r means I have to multiply when I am finding A r I have to find each row

of A, I have to multiply each element with each of the r vectors. So, there has to be 2

loops; one loop is for multiplication of for one particular row and other loop is for

multiplication of doing these for over number of rows.

And vector-vector multiplication is also I have to I have one loop which multiplying each
element with corresponding element of another vector and then summing them up. So,

now, if we look into the C program.

(Refer Slide Time: 26:57)

lin:.}nﬂ(nltd_\ip.hh A
#includecstd] ib. hx
i e caen o _ program
void mulix{oouble *p.double of],double r[],int n){
int {41
double sumsd;
for{isd;im;ie){

sums0;
forfjedijamjendl
sumssum* (pi*ne) *al§);
y rlilssun;
}
//vector vector dot product [
double mulxy{double *p,double *o,int n){
int i; double sum;
sumsl;
for(isdzimies){
sumssume® (pei)** (gei)]
return sun;
/fvector matrix det product // .
int mulysu(gouble *y.double *A double *x,int m){
int i; dowble sum;

sumsd;
for{is0zim;iee){ -
sumssums® (y+1) "oy (A+1°n, 1,0

return sum;

NPTEL ONLINE
CERTIFICATION COURSES

So, before this, before we go to the actual program we know that there are 2 vector-
vector multiplication which is a multiplication of A with x. So, we write a small program
for that and we can see that two loops; one loop is for multiplying within a row
multiplication, within a row finding a results for a row and then, doing it for all the other
loop rows all rows. So, for one particular row, this is for one particular row, where each
element of that row is being multiplied by corresponding element of that vector and then,

doing this loop programming this loop over all the rows of the particular matrix.

And then, there is a vector-vector product which is only one loop, there is another matrix

vector product which is there is vector matrix product right which is again sorry.

(Refer Slide Time: 28:01)

R
[

umd -JIA-c[de: p,double gf],double r[],int n){

dnubll sunsd;
fnru 0 damie)

*orh-ﬂl m; jred{
sumsgum* (0vi ne) *al4);

rlil=sun;
[{vertor vector dat product
double suluy(double g, dwbh g,int n){
mt |, double sum;

fnru-o:nn:‘.f){ X
sussume® (pei)** (gei);
return sum;
/fvector matrix det product // .
int mulyau(gouble *y.double *A double *x,int n){
m it ﬂwnh sum;

10 r(indgimgi
SUmssunY (', 1) l.'lx'p'(l\ LR

return sun;
1

int main(}{

- NPTEL ONLINE
IITKHARAGPUR CERTIFICATION COURSES

program

So, which will interestingly have a matrix vector product and then, there is another loop
which is doing a vector-vector multiplication. So, this is matrix vector product which is

matrix into vector product. This particular matrix in vector is again coming as the

multiplication of 2 vectors.

So, which you have seen that there are 2 vector-vector products, 2 matrix-matrix product
and 1 matrix 2 matrix vector product and for 1 matrix vector product, the product is

further multiplied by a vector. So, with these 3 subroutines are written previously.

(Refer Slide Time: 28:37)

s

[

int main(}{

prm:k ‘Enter the size of the interior sesh:in};
scanf (“d

int uzsn[lj [m):
i

i".
e i#1)[131]sL;
Apuesi i3]“ Pl 11 IHE &Y
A i et
i1 i sl
IIl[!N i H' lmn i ‘ﬂ] w4
double Th

171,77
prmn‘(Enur the value of tempertaure at bottos boundary:\n);

NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

' program

And similarly, the mesh file is defined for the pointers and we get the coefficient matrix
A; give the boundary conditions; change the matrix accordingly as per boundary
conditions so that it looks like a symmetric matrix because steepest descent is only

applicable for symmetric matrix.

(Refer Slide Time: 28:47)

i ot =r
0 e
forgiislifid-Liideed{ 3
afuesH{i1] [0]] (ueshlii+1) [0]]e1;
afuess{51] 1o} | beesi(1i-1] ol program
afuesalii] fo)] haes 1__],x] 1
AT ST G B
b{uesali1] (0] a0
for (sl i{ -1 11
AfuESA[1] Es-« iie 1”n 1”
Afuesa /i wESH (11 -1
apuess i1} -l!s-«nE] ol
AfuEsH [§ 'llEsmntl
b{uesal 1]
AfwEsfa) 0] L“SN
afwsafo] fo]] (wesi 1
A I'!in ﬂ o HM
nlmn 0|
Al -1 o‘dmn
Afwesiite-1] 0]} Juesi
Atiesta-14 0] esa [n
wesili-1] [0]]=
Atmn 6-1] [R-1 N!!H|l 1)[r- z‘
Afvsnfn-1] (n-1]] fwesifn-2) £l
afigsifk-1] -1 Nl!rll &-111
blwesnle-1 [n-1
Afasilo) (k-1)] SE oL
awesnla) ln- 11} juesa |1 €
afasifo] (r-11] Diesula
biwesufo] [u-1
double xB[n] rl[n orndpind;

NPTEL ONLINE

IITKHARAGPUR ‘ CERTIFICATION COURSES

(Refer Slide Time: 28:55)

Rl e |

[——

A"iintl”ll [Nisr'il[t 1]1e-4;

Fllli 0 Rl ‘|ES~1
0 " 1 MESH |1

iEM

' program

|lli
ORI
0!1

L

double x0[n].x1(n],r[n],pln];

for {is0zim;iee){
gruEr'[W)y "
or!
e .

printf{=%1f ° b[i]);
lprintf{™n");
for{isd;imiiee){

xlfilen;

A0(1]=0;
double epsilen,error;int count;
double *ptr:

Jet1]-miTny (ptreitn, x0,nk; \//reb=An, & 15 stored in vector fors//

double alpha;
mali(ptr.rpn); /ipsar//

. NPTEL ONLINE
IITKHARAGPUR CERTIFICATION COURSES

And then, r is equal to b minus multiplication of Ax; r is equal to b minus Ax and then
we say it an accuracy epsilon. See this is for we start with the x is equal to 0 guess value

and get r is equal to b minus Ax.

(Refer Slide Time: 29:07)

Ilrqu["\lf Bliln

lpr I
st program

double epsilon,error;int count;
double *ptr:

prraka[0] [0

1nr§| sl +1{ . .

5’1‘ abf1) why:prr\ m,x0,n); Vi reb-an, & i3 stored in vector fore//

double alpha;
maldnipte.r.p.n); Jfp=ar//

rm:f(!nur we desired accuracy:”);
anf (%11 Sepsilen);
cmn:-o
#rrorslepsi 1M‘
whileerrorsepsilon &4 count«2000){ //iteration loop starts
for (ksdzkan;kes) {
wik]=x1(k];
alphassuluy(r,r n)/mlxy{p,r.nd; /icalculate alpha//

farisdyim;ived{

NPTEL ONLINE
CERTIFICATION COURSES

IIT KHARAGPUR

(Refer Slide Time: 29:13)

suf-u[o [q "t -
for(is0;14n; |
:r" =b[1} -umimr\ n,x0,n); Viifreb-dn, & 5 stored in vector form// prOgrﬂm

double alpha;
malax{ptr,r,p,n); /fpsar//

prmn‘("Enter tn(desired accuracy:”);
anf (61" bepsilon);
countsd;
errorsl®epsilon;
whileferrorrepsilon &8 counte2000){ //iteration Toop staris
for (ke kemkee) {
y wa(kjsnafk];
alphasaulxy(r,ron)/mlxy(p,r.n); /fcalculate alpha//
for[i-o 1
1[i]+alpharrli];
1[| -I'[li -alpha i"ﬁ:

milaxiptr,r,p,n);//Caloulate r within the loop

:;;?r flbl(ul[ﬂst;cu[ﬁzl

_ NPTEL ONLINE
IITKHARAGPUR CERTIFICATION COURSES

And then, we update x calculate alpha by r dot r divided by r dot A 1; p is the product of

A; p is calculated as multiplication of the between the vector r and the matrix A.

(Refer Slide Time: 29:33)

-
printf("Enter the desired accuracy:");
scanf (N1 Sepsilon);

count=d; TO rﬂm
errors2*epsilon; P g
while(errorsepsilon &4 counte2000){ //iteration loop starts

for (ks kam;kes) |
wik]=x1(k];

alphassuluy(r, ron) /mulxy(p, r.nd; Jicaleulate alpha//
forfisd;imiss){
:11:‘]-:1:!-'1]-!]9"1‘{51,':
I[ﬂ-r[\j-l'\pnl'p:\

milaxiptr,rp,nd;//caleulate r within the Toop
errorsfabs (x1[0]-x0[0]);

for (kelikan;kee)
\}\‘(lrrnrdm::u

Countes ! e
} printf("Iteration % Error«¥1fin",count,error);

Ek:-m(\] 3} {errorsfabs (e1{k]-x0[k]):}

hr[\-D:Ic-_n:knE{
printf("Final x[%d]=810n" k1 k1):}

NPTEL ONLINE

IITKHARAGPUR CERTIFICATION COURSES

So, then we update x and r and we check that whether error the difference between old x
and new x is lesser value epsilon, if it is so, the control goes here and the loops goes on.

So, it is this is how a steepest descent type of program is written and now we can look

into 2 other projection methods.
(Refer Slide Time: 29:51)

PP RL AN Pe G UD
Minimum Residval Method- Algorithm

Start with guess values of x=x

1. Compute r b@ond P

2. Unfil convergence, DO
T s
3. Compute az@ Similar as
@ steepest descent
4, Update x-x
5. Update r—r-ap
6
7

. Compute p @,

NPTEL ONLINE
CERTIFICATION COURSES

One is minimum residual method, where very similar to the algorithm also looks similar
to steepest descent except alpha is called calculated as p transpose r by p transpose p and
p is equal to A r. So, here I am sorry here, we need to have 1 matrix vector product rather

start with 2 matrix vector product, and then, this there is a vector-vector multiplication,

there is a vector-vector multiplication.

Again we have to do one matrix vector product. So, there are 2 matrix vector product.
This can be found before the iteration for only x is equal to 0 because later r is updated as
that and then, there are 2 vector-vector products. So, you have to write similar

subroutines for that.

(Refer Slide Time: 30:39)

PP e quds fe 0D

Residue norm steepest descent- Algorithm

Start with guess values of x=x?

Compute r=b-Ax

Until convergence, DO ‘tw?“ ‘”‘dra’f r)l;pM
V@ 2 s '\’QO{‘J‘,

6\#
Compute «= | ﬁ 1, \[kd\
Update o viar

Update ;o r-adr

' NPTEL ONLINE

IITKHARAGPUR ‘ CERTIFICATION COURSES

And the next method is the steepest descent is the residue norm steepest descent method,
where there is a again a matrix vector product, but now we take transpose. So, they have
to be stored in transpose form and found the product is since little more involved in
terms of computational processes also because when we stored a matrix, we store the
data row wise its using right pointers we can use a contiguous chunk of memory which is

which will be very easy for the processors to access.

But when you look into A transpose, the memory ordering is changed and the processor
has to access different locations of the memory, it might be a slower process, it will be

consider a large matrix in distributed systems or in graphics (Refer Time: 31:30) systems.

However, so, there is a one matrix vector product. This is I 12 norm is basically what is
the vector-vector product and this is the matrix vector product 2 and then, a vector-vector
product. So, there are 2 operations; one vector-vector product V 2 square AVAV is also
vector-vector product, but finding AV is the matrix vector product and AV is already

found out. So, you not have to do anything there. So, you have 2 matrix vector, operation

product and 1 and also 2 vector-vector product and the program has to be modified

accordingly.

You can try if you start with the steepest descent program, you can modify it accordingly
to get residue norm and minimum residual program, the basic structure of the program
remains same. The main part of the program are the matrix vector and vector-vector

products.

So, this is how we will we showed in little detail how programming of the iterative
solvers can be done and in similar way, we you can explore more to spend some time and
look into the codes, also many number of codes are available online as open source
software’s. We can write the computer programs for even for a very large size matrix

using these algorithms.

Thank you.

