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Welcome over last few lectures we have looked into the Algorithms for different solution

methods both direct and iterative way for matrix equations. However, these algorithms

are designed to solve large matrices, which we really cannot handle using simple paper

and pencil and as we have mentioned this several times a good solution technique should

be also designed, keeping into mind that it has to be translated into a computer program.

So, in this particular session and also in the subsequent class we will start looking into

how we can make computer programs from these solution algorithms. So, mainly look

into c programs, but any programming language as well as the programming platforms

like matlab can be used for writing these programs and you will see plethora of already

writ10 programs in Jacobi algorithm for Gauss Seidel or for the algorithms, well discuss

in future like by conjugate stabilized algorithm or generalized minimum ratio algorithms

plethora of examples are there of this algorithms translated into computer programs in

different C C plus plus Fortran Fortran 90 Python as well as matlab r and these are well

available in internet resources.

So, sometimes we pick these algorithms for from open source codes available in internet

as internet resources and plug it into the particular application we are trying to develop

and sometimes also there in form of some software or some executable built using the

source code is not available to us on the executable, we chooses these essentially these

algorithms for matrix solutions and we plug call those softwares we plug this executable

with our program and (Refer Time: 02:25).

 Nevertheless it will be important to look into inside the program and what is inside the

code.  So, well  primarily look into few examples using c and also you look into few

Fortran implementations and see how different variants of similar solution technology,

like for basic iterative method how different variants Gauss Seidel, Jacobi, Sor can be

written as computer  programs and later  we will  see,  how the generalized  production



processes like steepest descent, minimum residual method etcetera also come and when

we will discuss about conjugate gradient by conjugate stabilized.

 We will also discuss about those algorithms now but based on the understandings we

have built and the algorithms we have yet covered we will concentrate on a few of the

basic  iterative  algorithms  and  well  start  with  Jacobi,  Gauss  Seidel  and SOR in  this

particular lecture. So, this is on computer programming for basic iterative methods. 

(Refer Slide Time: 03:34)

So, if we look into the Jacobi iterations algorithm, we are solving a matrix equation Ax is

equal to b and as we know A is diagonally dominant or irreducibly diagonally dominant

for implementation of this particular algorithm and in a Jacobi method the ith row of the

matrix in general the ith row of the matrix is given as a sum of a ij x i is equal to bi. Now

let us assume I will get solution x is equal to x 0 for different values of the different

elements of the (Refer Time: 04:09) vector x we start with a guess solution and for the

levels of k which are the iteration levels k is equal to 0, 1, 2 we update x as x i k plus 1 is

equal to bi minus a ij xjk where j is not is equal to i 4. So, for all of diagonal ai j we

multiply it with the corresponding x and divide it by aii.

 And we iterate it we will so, we get a k. So, we start with x 0 you got x 1 using x 0 here

and then with x 1 we get a using x 1 here we will get x 2 using x 2 here we will get x 3.

So, you are updating all the elements of the vector x at different level and we will do this

till  we get convergence that is x i k minus x ik plus 1 its absolute maximum of the



absolute values is less than epsilon and we have seen that once these value convergence

to a very small number the equation a ij xj is equal to bi or the residual of the equation

that is bi j minus sum of a ij x i for each row of i also converges to 0.

So, converges convergence of the x vector also imply that the residual will converge to 0

or the equation will  be approximately satisfied to a to a high accuracy, based on the

parameter epsilon and this epsilon, usually depends on machine,  machine accuracy is

something it is a small value it is a 10 to the power minus 8, 10 to the power minus 12,

10 to the power minus 16 etcetera. 

Based on based on what type if we are using single precision variables you usually stick

to 10 to the power minus 8, but there are certain cases using double precision and high

double precision computer and high accuracy algorithms you can go for higher level of

the value of 10 to the power minus 16. So, epsilon is a small number the differences

between the present value and the updated value of the expector must be small that is the

idea which will carry forward.

(Refer Slide Time: 06:21)

 The Operational steps main operational steps, we will look into this particular case for

every at any iteration level for every element of x or every row of the equation we have

to find out x ik plus 1 is equal to bi minus sum a ij its xj j is not is equal to i divided by

aii; that means, this sum has to done for all the elements in a row or for all the members

of the vector x if the x if I I have a 2000 by 2000 matrix x s 2000 element. So, this



summation has to be done 1900 and 99 times except the diagonal term and this now this

operation has also been repeated for all the rows. 

So, sum of four large number of j j is not is equal to i for each of the i rows. So, we have

to do it for 2000 i rows and in each row we have to do it for 1900 99 times. So, it said I

had a large number of operations if we think of doing it manually and also the update of

k x k plus 1 is and xk this k plus the with different values of k, I will find out x a

different iteration level, this update has to be found out till this value is less than epsilon

which is also a large number of iterations has to be done and we will see some example

that; iteration numbers can go up to few 100, few 1000, 10000 also depending on the

matrix size and the nature of the matrix.

 So, for large values of k this has to be related. So, large number of steps are to be

followed for large matrices both in terms of the multiplication and find finding out x ij

plus 1 as well as the same operation this operation has to be looped over a number of

iterations, till we get a high value of case. So, that the solution converges. 

(Refer Slide Time: 08:28)

.

So, sum of computer programming for Jacobi method will essentially have few important

step sum of all the terms in each row that is, looping the sum over all rows to update

each element of vector x. So, we have to find out for all js in one particular row and then

we have to loop it over all rows to find out all image elements of vector x and then

looping this update for large k times till convergence. So, once we do this is only one



step and it will not converge to the right result. So, you have to loop this for several time

till you get a convert solution.

Also you need to store old values of x x k once it is it  will be used to compute the

updated xk or xk plus 1 and as well as it has to be compared with the updated x. So, what

I will say that xk x at kth level has to be stored to calculate x at k plus 1 as well as, but

once  we  calculate  this  we  cannot  discard  this  variable,  because  this  will  be  further

needed to compare with xk plus 1 in in the way we have to see what is the max of i x i k

minus x i k plus 1 is this is this less than epsilon or not. So, you have to also compare the

variables are different levels.

So, these three are the main steps when you think of a computer program and a computer

program  essentially  does  few  arithmetic  calculations  like  addition,  multiplication,

division etcetera and also there are logical loop logical gates like if the value is less than

epsilon, then we will say that the solution is converged and will not carry forward the

calculations, if it is greater than epsilon then we have to again go back to the previous

type set of operations; that means, calculating of xk plus 1 using xk. 

So, you have to loop over the rows to calculate xk plus x ik plus 1 for different value of i

and again we have to put a loop of calculation of xk plus 1 x ik plus 1 for a large number

of values of k, once we get it we will start with k is equal to 0 will calculate x except x 1

wills do then we have k is equal to 1 and we will calculate x 2 and so on. So, you have to

loop it over the values of k also. So, there are 2 loops similar operations that has to be

done again and again in these 2 loops and there is an important logical step that, whether

the value is less than epsilon or not. 



(Refer Slide Time: 11:22).

.

So, as an example we will look into a 2D Laplacian problem using Jacobi method, where

solving del 2 T essentially delta 2 T del x square plus del 2 T del y square is equal to 0

and the boundary conditions are given T is equal to 1 T is equal to 1 A is equal to 0 T is

equal to 0 as a matter of fact you can give any boundary condition of T here. When you

convert  it  using  finite  difference  when  you convert  it  to  a  matrix  to  this  difference

equation Ti minus 1 j minus 2 T ij plus Ti plus 1 j by dx square plus T ij minus 1 minus 2

T ij plus Tij plus 1 by d y square is equal to 0.

 And if dx is equal to d y we can write Ti minus 1 j plus T i j minus 1 minus 4 Ti j plus

Ti j plus 1 plus T i plus 1 j is equal to 0. Now what we have to do we have to express this

in the matrix form and we have discussed this earlier we renumber the points 1 2 3 4, 5,

6, 7, 8, 9, 10 11, 12, 13, 14, 15 16, 17, 18 so on. So, this particular point which is 19, 20

21, 22, 33 and this will be 32.

So, this particular point will give us a this is 24 matrix equation where there will be T 24,

T 22, T 14, T 24, T 22 and we will get a matrix equation a t is equal to 0 for the 23 row

all the terms will be 0 except 23, 22, 23, 33, 14, 22, 24, 22, 32, 22. We have discussed it

earlier  that we can express it now as a matrix equation and we will try to solve this

matrix  equation  using  a  Jacobi  method  first  and  then  we  will  see  how this  can  be

modified to Gauss Seidel or SOR. 
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So, this is how the equation for each row and when we will write it in a matrix we will

get up into a diagonal matrix few minus 1 1 4 and like multiplying minus 1 with here to

get the positive diagonal term, it could have been done similar with the negative diagonal

also because the absolute value of the diagonal is important not the value of the diagonal

the sign is not important to look into diagonal dominant.

So, these are diagonally dominant system as when we will apply boundary condition the

boundary terms we have 4 minus 1 1, so, 4 is greater than some of them. So, this is a

diagonally  dominant  system,  so  we  get  a  row like  this  and  how can  we  solve  this

equation  and  there  that  will  have  a  matrix  like  this  and  we  will  put  the  boundary

conditions to make the matrix non singular and diagonally dominant and try to solve it

using a Jacobi method.

 So, what we will have to do in Jacobi method we have to find it start with an js value of

x find the updated value of x for each node for each of the points you have to find out the

updated value of x, then we will check whether the updated value and the previous value

are very close to each other if not then we have to use take the updated value as the

guessed value and then we have to find out the next updated value. 



(Refer Slide Time: 15:06).

 So, we can look into a Jacobi code maybe I should come out of this and open this in a

notepad plus plus which is more real well visible. So, this is the Jacobi code 2 d Jacobi

dot c I just have to improve the font size I hope that this is very visible now. So, 

(Refer Slide Time: 16:38)
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So,  this  is  the  2  d  Jacobi  code  and  it  starts  with  all  the  header  files  you  need  for

calculation for a c program, especially the math and time are important because some

mathematical functions will be included and we also we are also trying to measure the

performance of the code in a sense how much time it has taken.



So, you have to internalize of the mesh we took a 2 d mesh with same number of points

in x and y direction. So, what will be the total number of points and you define the file

mesh based on that.

(Refer Slide Time: 17:10)

And now you may this mesh is basically mesh will take basically the x and y coordinate

x i and j index of 1 particular point and then with mesh ii ij will not locate this point into

one particular like from 2 3 that is this point what is its absolute location in this mesh.

So, based on this we will form from the A matrix A and they this A matrix will have 1 in

the off diagonals and minus 4 in the diagonal term and all other terms in the a matrix will

be 0. So, we have initialized the matrix as 0 and now this terms are 1 and minus 4 and we

also  put  the  boundary  conditions  we  read  the  value  of  temperature,  which  are  the

boundary conditions at for the sidewalls and the top and bottom wall and substitute this

into the equation. So, he up to here we have got the a and b made a matrix and b vector. 

 Then the next step is that you use initial value of x the initial gauss all the xs are made to

be 0 it could have been made anything in a Jacobi program, but here we try to make all

the xs to be 0. So, in take the desired accuracy last for what will be the accuracy or what

is the value of epsilon specify epsilon, what should be the value of epsilon and it is great

as epsilon. So, the user will have an input that whether you will try to get a convergence

up to 10 to the power minus four x k plus 1 minus xk is of the order of 10 to the power



minus four or 10 to the power minus 8 or 10 to the power minus 12 will specify the value

of epsilon like that.

And an error is calculated as twice of the epsilon clock time is started to take care of how

much time its taking etcetera.  So, and the loops are done where error is greater than

epsilon initially we took some error twice epsilon, but later we will find out the error and

in  calculation  error;  that  means,  the  difference  between 2  values  of  x  at  2  different

iteration level, whether this is greater than epsilon or not if this is not greater than epsilon

the loop will not be done and iteration count number of iteration is less than 1500 or not

if we go for more than 1500 iterations we will say that this is not converging and will

come out of it in this particular code.

 So, error is xk minus xk plus 1 and the maximum value of because xk is also a vector xk

plus 1 is also a vector there difference is a vector maximum value of that vector is a l l

infinity, now we will take this as the error and this should be less than epsilon for the

convergence. The next step we do for k loops we start with k is equal to 0 and go for k

less than n and start adding k and later you can see the variable count is advanced in each

iteration; that means, if k is equal to 0 count becomes 1 k is equal to 1 count becomes 2

etcetera count is the counter of the number of iteration its exactly the increases exactly

the same way as k increases also. Now, what we have to do in the iterations. 
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We have to find out this summation p i x i k plus 1 will be bi minus x i j a ij xj for j is not

is equal to i. So, we will do these summations a ij xj up to the diagonal term and start

with a i 1 x 1 and do up to aii x before ai i x 1 ai i i minus 1 x i minus 1 we will do this

sum and then also we will start the sum with a i i i plus 1 x i plus 1 and go up to ai n xn.

So, this sum is broken into two parts one is up before the diagonal another is the times

after the diagonal, we can see the program that is sum is equal to is the sum ai j xj into x

0 and this is done for j is less than i and then this is done for j is equal to i plus 1 to j is

less than n. So, except i is equal to j that answer some and this sum is subtracted from b i

and then is divided by ai i which gives me x 1 x 1 is the updated value of x.

X 0 was the gauss value x 1 is the updated value.  So, we will  find out what is  the

absolute value between x 1 and x 0 for 0 at vector and then will find it out for or other

vectors and if the for the 0th element we will find it first for 0th element and then well

check for which it is maximum, if it is maximum for first element then error is replaced

by x 1 minus x 1 0 1 if it is more in second element error will be replaced. 

So, that is why we will find out the maximum value of the error which is maximum

value of xk plus 1 minus xk or x 1 minus x 0 for, but this look this k is not the iteration

level k this k is the element number in the vector x and here our iteration loop ends. So,

that the iteration counter will go and check whether count has been added by plus 1 1

where count is less than 1500; that means, 1500 iterations are not are done or not and

error is greater than epsilon.

And once it is done it will come out and once the error is less than epsilon then this will

not  be  satisfied;  that  means,  the  sub program has  converged,  the  x  x  1  and  x  0  is

minimally far away from each other the difference is less than a number which you have

thought already. So, we will write down that this is the count and this is the error and we

will write down the results. So, this is what we get made the Jacobi iteration method.

Now, we will look into few other methods, so, this is what we got in Jacobi iteration.

Now we look into the Gauss Seidel method a is a diagonally dominant matrix same thing

ith row is a ij ai e jxi is equal to b and we will start with x i is equal to x 0, but update is

not x i k plus 1 is bi minus j is not equal to i aij xk i i rather the update will be x i k plus 1

is b i minus j is less than i a i j xjk plus 1 because this xs are already available minus a ij

xj k. 



So, this is done based on the values already known to us and then we will do the same

loop it till we get convergence; that means, maximum value of this is less than epsilon. In

the next section we will look into Gauss Seidel and Jacobi and successive over relaxation

method, which is these codes can be very easily obtained by slight variation of Jacobi

method and will  also look into a different class of method which are the generalized

which  are  the  general  projection  methods  like  steepest  descent  minimum  residual

etcetera.

Thank you.


