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Hi. So, in last class, we was we were discussing stiff general projection methods. The

idea is that that there is a projection method for solving the equation A x is equal to b. In

that scheme, we are updating x as x is equal to x x prime is equal to x plus delta, so that

delta belongs to certain vector space k or delta is equal to V y, where V is basis of. And

new residual b minus A x prime is orthogonal to L or W transpose b minus A x prime is

equal to 0, where W is basis of L.

So, we have two subspaces K and L, x is being updated in a one particular subspace. The

condition for this update is that that the new residual after the update the residual will

obtained is orthogonal to another space L. Now, what we will do, we will make few

selections of W and V or K and L, how these spaces are, and see what type of iterative

methods we are getting, and we will also check whether this iterative methods converge

to the right result.
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If W is equal to V, remember here if W is equal to V, we call this as a Galerkin process.

And this is also an orthogonal projection, when both these spaces are same.

(Refer Slide Time: 02:07)

Now, we look into one-dimensional projection process. In a sense that K and L K and L

are one-d spaces subspaces K and L are one-d subspaces in R n. So, what we call a one-

dimensional projection process, along the by meaning K and L will consider only one

vector; K is one particular vector, L is one particular vector. So, x is updated along one

particular vector, it is not along in a vector space, it is just only one vector along this



vector, x is updated. So, update of x will be like Steepest Descent algorithm. Update of x

is equal to x 0 plus alpha into minus grad J. So, minus grad J is one particular vector.

So, here we will  think that the space K is one particular  vector, it  consists only one

vector, and update will be certain this vector multiplied with certain magnitude. And L is

also a one-d space that means, L was also one particular vector, they can be one-d space

in a in  R n with multiple  component  with number of components  with 2,  3,  4,  n n

components, they are subspaces of R n, however they are single vectors.

(Refer Slide Time: 03:49)

So, K and L are one-dimensional space in R n. So, their basis what is the basis for a one-

dimensional space, the dimension of one-dimensional space is one, so single vector in

that space is a basis for that. A line in 3D a straight line is a one-d vector; in 2D also

straight line is a one-d vector, so it is only a single vector, which is needed to describe

that space, which is in linearly independent and spanning that spans over that space.

So, the basis vectors in R n will be single vector v 1, v 2, v n, for example, W is equal to

W 1 to W n that is one independent vector spans the space, and then it is called a one-

dimensional space. However, they can be in multi-dimensional real coordinate space R n,

so they have multiple components, but the basis is a single vector of these spaces.

So, we can write x prime is equal to x 0 plus alpha V, where this is will be x 0 plus alpha

into v 1, v 2. So, alpha is a scalar, earlier y was coming to be a vector, but alpha is only



one component, because it is a single vector, this is only a magnification or skewing of

the stretching of a single vector. So, alpha is a single is a single scalar quantity, x prime is

equal to x 0 plus alpha into a single vector.

And we can write that alpha is equal to W transpose r 0 by W transpose AV. If we can see

the previous example, where y is equal to if we go back to the previous slide y is equal to

again check from the previous slide, y is equal to W transpose AV inverse W transpose r

0, so that will give me alpha is W transpose r 0 by W transpose AV.

Now, what is r 0, r 0 is a vector single vector is a column vector. What is W transpose, W

transpose will be now a row vector, and what is so, this is the W transpose r 0 will be

again a scalar right. So, this will have 1 into n, and this is n into 1, so this will be a scalar.

Similarly, V is  a  vector,  so V is  a  single  vector. So,  AV will  be  a  single  vector  W

transpose AV will again be a single vector. So, this is basically scalar by scalar.

So, if we consider the vector spaces K and L to be one-dimensional spaces, then y comes

out to be a scalar, if K and L are one-d. And we represent y by the term alpha. If we start

with consider or if we assume one-dimensional  spaces of K and L, K and L we dis

discuss they are m-dimensional  subspace of  R n.  So,  each vector  in  K and L has n

components, but there can be less than n less than equal to n independent vectors, which

is or m independent vectors, which is spending over K and L.

Now, this choice of K and L is in my hand, this is the way and to define the iterative

process. The theorem is that there is an there is an iterative process by which we can find

an approximate solution using Petrov using Petrov-Galerkin condition, or if W is equal to

V that is Galerkin condition, using this condition that is the solution vector x is updated

along one particular space K, and it is updated one that using the condition that the new

residual b minus A x updated, new residual is orthogonal to another space L.

Now, if I have chosen K and L and k what is K and L, we have not mentioned in the

theorem, we said that it  is possible to have iterative method like that,  so K and L is

depends on our choices. So, we choose we have chosen K and L to be one-dimensional

vectors here, the exact form we have not chosen, we have just seen that K has a single

vector. The entire base K is along a particular is a basically a line along a particular

vector direction, so it has a single basis vector. L is also along a particular line, L has a

single basis vector, and that gives us that y or the update of x will be a scalar multiplied



by the basis vector along K, L. So, x will be x x tilde will be x 0 plus alpha V, and this

alpha comes out as W transpose r 0 by W transpose AV.

Now, with choice of W and V, I can get different values of alpha and can define different

convert  iterative  processes.  There  is  a  beauty  of  this  method,  it  started  with  a  very

abstract thing. And then, we came out little too little substantial idea that we can choose

few one-d vectors as W and V, and then try to see, if we can get a iterative method out of

it.
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So, for k-th iteration, alpha k is equal to W k transpose r k by W k transpose AV AV k.

Let us quickly check with the Steepest Descent method right, and that gave us alpha k is

equal to r k transpose r k by r k transpose A r k. So, if we compare them, V k is r k along

r k that means, I can write x k plus 1 is equal to x k plus alpha k r k. And W k is along r

k, so the new residual is perpendicular to W k or we can write r k plus 1 is perpendicular

to r k, and that is exactly what do you get in Steepest Descent method.

If I draw pictorially, this is J is equal to constant line, and I take a this is my x 0, so I take

a minus gradient of J is equal to r k, and I get somewhere here x k is equal to x 0 plus

alpha k r k, and I get the new search direction or new residual here, which is again minus

grad J at so, this is at x 0 minus grad J at x k is equal to r k plus 1. And this direction so,

these two are perpendicular to each other, which is perpendicular to r k.



So, by choosing W k is equal to r k by choosing W k is equal to r k and V V is equal to

W is equal to r k and V is equal to r k, we can get the Steepest Descent algorithm. So,

started with something very abstract, but with right choices we had choice over W and k,

k and m. So, this basically K any vector any vector that belongs to K you should you

should write it in a different way any vector say a into r k belongs to K, also any vector b

into r k belongs to L.

So, I have and as K and L are same W and V are same, so we call it to be W is equal to V,

this satisfies Galerkin condition K is equal to L that means, this is orthogonal projection.

So, by choice of W and V or K and L both to be r k, it is a Galerkin satisfies Galerkin

condition or it is an orthogonal projection method, we can find out the Steepest Descent

method.

What is the Galerkin condition here, x will be updated along a particular line. So, we can

write along a particular line, which r k particular vector r k residual at that state. And so,

this is not I have give, this as this is x k is (Refer Time: 14:50) this should be changed

here. This is x k, this is x k and this is x x k, this is x k plus 1; x is updated along a

particular line x k, so that the new residual r k plus 1 x is updated to be r k plus 1 is

perpendicular to that line only on r k. So, this gives us Steepest Descent algorithm.

Another  point,  while  we reach this  is  that  that  if  I  look into W and V, they are not

something constant irrespective of the iterations with different each iteration W and V is

changing r k is changing. So, for the new iteration, this will be the r k plus 1 will be the

W and V. This is this is r k plus 1, this will be W k plus 1 or V k plus 1 with the and the

new iteration, W and V will change, so r k will change in the new iteration. So, each

iteration  W and V changes,  and alpha  k  also  changes,  however  we get  a  new such

direction, therefore x k changes; x k changes along different direction in each different

iteration also.
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So, again what we get here is that that x k plus 1 is equal to x k plus alpha k delta k,

where delta k belongs to the subspace K or delta k is a sorry x k plus delta k I am sorry, x

k plus 1 is equal to x k plus delta k or delta k is equal to alpha k r k. And r k plus 1 is

equal to b minus a x k plus 1 is equal to b minus A x k minus A delta k plus A delta k,

which is r k minus A delta k. This is perpendicular to r k this or this is perpendicular to r

k plus 1 is perpendicular to L (Refer Time: 17:32) this gives us what is Steepest Descent

algorithm, which is obtained by certain choices of W and V.

Now, we started with the question that can we have methods for non-symmetric matrices,

can we have methods for non-positive definite matrices or can we have a method for any

general matrix any general non-singular matrix. So, singular matrix solving A x is equal

to b by an iterative scheme is not what we are discussing, is not is not very it is not

probably proximal, is not very simple, but we are looking only solution of A x is equal to

b in a in an iterative method.

Steepest  Descent,  what  we  have  discussed  using  geometric  constructions  is  for

symmetric positive definite matrix,  which is obtained by minimization of a particular

functional, J is equal to x transpose A x minus x transpose b. The same method can be

obtained from a projection method, because it is kind of we have guns are cooler till

now, we  develop  Steepest  Descent  method  based  on  minimization  of  J,  which  is  x

transpose A x minus x transpose b for symmetric positive definite matrix.



Now, looking into the minimization and the gradient search algorithm associated with the

minimization with summarized it to be a generator to a general projection method. Then

we looked into a specific case of general projection method, which is one-dimensional

vectors with W and V or K and L is equal to r k, and we obtain Steepest Descent, but can

we obtain some other method from the general projection method, which is applicable

for wider class of matrices.

(Refer Slide Time: 19:17)

The  next  method  is  called  minimum  residual  or  MR iteration.  A is  not  necessarily

symmetric,  but is positive definite  that is A plus A transpose is a symmetric positive

definite matrix, which is symmetric part of A. A is a positive definite matrix, but A is not

symmetric matrix. And we define a projection method at each step with V is equal to r k

and  W is  equal  to  A r  k,  so  it  is  not  a  Galerkin  condition,  and  this  is  an  Oblique

projection, K is not equal to L.

And we end up with the following procedure r k is equal to b minus A x k. Alpha k is

equal to W k transpose r k W k transpose AV k, where W is replaced by W is replaced by

A r W is replaced by A r and W is replaced by A r, and V is replaced by r k. So, we get a

new x k plus value of newer value of alpha k, how to update the x k, which is A r k

transpose r k A r k transpose A r k, and we update x k plus 1 is equal to x k plus alpha r k.

So, if we look into the algorithm, this is now this is an algorithm, which is for non-

symmetric matrix, however the matrix has to be positive definite. If we look into the



algorithm, alpha will it is exactly same as Steepest Descent method. And in practice, we

will  do,  so we will  take a  Steepest  Descent  method computer  program and do little

modification, and we will get the minimum residual iteration. And we can see that 1 is

apply applying applicable only for symmetric matrix, so if the other is more generally

applicable. However, so we start with the Steepest Descent we start with guess x k and

update x k as A r k transpose r k r k transpose A r k is alpha k x k plus 1 is equal to x k r

k.

(Refer Slide Time: 21:44)

So, if you look into the algorithm, compute b is very same as Steepest Descent only the

alpha computing part is different, you start with a guess x is equal to x 0. Compute the

initial residual r is equal to b minus A x and p is equal to A r. Then until convergence,

check and compute alpha, which is p is equal to A r transpose r by A r transpose A r. So,

you have to do matrix multiplication only here, and then only do vector multiplications.

Update x is equal to x plus alpha. Update r is equal to r minus alpha p. Now, in this part,

how r k plus 1, so this basically tells us that r k plus 1 is equal to r k minus alpha k A r at

k-th level, this is the relationship between r (Refer Time: 22:51). And by this, we are also

ensure we also ensure that r k plus 1 is perpendicular to certain plane. What is r k plus 1,

is perpendicular to a r k, as a plus 1 is perpendicular to this particular plane also. So, if

you take dot product r k plus 1 dot r k with that particular value of alpha, it should come

to be 0, fine.



So, update this, and compute p is equal to A r. So, update p, and then count do this loops.

And until convergence means until r k plus 1 is equal to b minus A x k plus 1 is less than

this its mod sum norm of it is less than a very small number, then repeat this steps.

(Refer Slide Time: 24:13)

So, what we are doing here that is we are we have taken a update space x k is equal to x

k plus alpha r k, update x k is changed along k along V, which is r k. And r k plus 1, so

we have also take in that case (Refer Time: 24:35) r k plus 1 is perpendicular to W or A r

k transpose r k plus 1 is equal to 0. From there, we have found out what is alpha k and

designed a method.

So, again if we think of a general projection method, what it is doing physically. For

example, when we talked about a Steepest Descent algorithm, physically it is minimizing

a function J, which is x transpose A x minus x transpose b, and searching the updated

value along gradient of minus J. Now, what is this algorithm, doing physically.
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Each step in minimum residual method, minimizes b is equal b minus A x second norm b

minus A x square the square norm of b minus A x. And in each direction, it changes b x

in a direction b minus AX. So, this is minimization of the L2 norm of the residual b

minus AX. So, earlier it was minimizing x transpose A x minus x transpose b for Steepest

Descent algorithm.

For minimum residual method, it is minimizing that L2 norm of the residual. So, this is

finding, again it is a minimization for finding only. Instead of finding minimization of x

transpose A x minus x transpose b, it is finding the minima of L2 norm of the residual,

which is b minus x transpose b minus A x transpose b minus AX. So, this is this is

nothing but this is equal to b minus A x transpose b minus A x, it is find the minimum

residual norm of that. Now, we as we are discussing about in iterative method, we also

need to look into the convergence of this method, whether this converges or not.
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And the convergence theorem gives that if mu is the minimum eigenvalue of A plus A

transpose by 2, and sigma is the L2 norm of the matrix A, I mean a matrix norm, so this

is the second norm of using L2 norm matrix A. Then the residual r k plus 1 2 is always

less than 1 minus mu square by sigma square r k by 2. So, if the matrix is positive

definite, then this value this is again a positive number right, then this value is and this

has to be because this is a positive number, this is a positive number, this has to also be

positive. So, if then this method will actually converge for any initial guess.

And  the  rate  of  convergence  will  depend  on  the  minimum eigenvalue  of  A plus  A

transpose by 2, and the second matrix norm second matrix norm of the matrix A. Now,

this is again for a matrix, which is positive definite; if we have a matrix, which is not

positive definite.
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So, if we have a general matrix A is not necessarily symmetric positive definite, it is not

necessarily symmetric not necessarily positive definites, if it is a any square non-singular

matrix. The projection method will start at each step with V is equal to A transpose r k

and W is equal to AV, so this is also an oblique projection as A is as sorry as W is not

equal to V, this is also an oblique projection method. And the idea will be r k is equal to b

minus A x k, where V is equal to A transpose r. 

Alpha k is obtained as Vs second norm of V 2 square square second square norm of V 2

by AV 2 second square norm. And x k plus 1 is equal to x k plus alpha k V k, which is

basically this is equal to x k plus alpha k A transpose r k.
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So, if we look into the algorithm, we will start with guess value x is equal to x 0 until

convergence V is until convergence means, until r k is mod of r k is less than a small

number epsilon. V is equal to A transpose r. Compute alpha, update x is equal to x plus

alpha V, r is equal to r minus alpha AV. In why r is equal to r minus alpha AV, we can

quickly check that W is equal to AV, so r r k plus 1, so this will tell us that r k plus 1 is

perpendicular to AV space. So, r r is equal to r minus alpha AV.

So, we are taking alpha AV from r k, so, it is what is along AV is taken away, so what

remains is basically perpendicular to r k plus 1. If we apply the ideas, we obtain during

orthogonalization,  you can decompose a  vector  along one particular  vector, and it  is

perpendicular  component.  So,  if  we  take  away  the  component  which  is  along  that

particular vector, what will be remaining that means, r k minus alpha into AV, if we take

out that particular component should be perpendicular to AV that is the idea. And this

gives us the residue norm Steepest Descent algorithm, which is which is applicable for

any general matrix any general A matrix.

And (Refer Time: 31:20) and this starts with one matrix vector multiplication, here A

transpose r. And again, you have to do a matrix vector multiplication AV here. So, there

are two matrix vector multiplication associated with it. This is more expensive compared

to  the  earlier  methods.  However,  as  is  a  general  method,  the  advantage  is  that  the

matrices,  which cannot be solved using Steepest Descent or for example,  the matrix,



which is  not  diagonally  dominant  and not  positive  definite  using  even (Refer  Time:

31:54)  Gauss-Seidel,  Jacobi  that  can  be  solved  using  residue  norm.  This  is  for  any

general matrix, now there is no restriction on the structure of the matrix.

(Refer Slide Time: 32:09)

So, we will also check, what this is physically doing, each step minimizes b function b

minus A x square. Earlier it was minimizing for minimum residual, it was minimizing in

the direction of r, now it is not minimizing in the direction r, rather it minimizes L2 norm

square norm of L2 square of r in the direction of grad f.

This method is equivalent to Steepest Descent algorithm or normal equation A transpose

A x is equal to A transpose b. So, this is a symmetric matrix,  in this is also positive

definite  matrix  A transpose  A x,  if  A is  non-singular.  So,  this  is  Steepest  Descent

algorithm on a equivalent to Steepest Descent algorithm on a SPD matrix. However, this

is  applicable  for  non-SPD  matrices.  Convergence  rate  is  based  on  minimum  and

maximum and minimum eigenvalues of A transpose A. So, the method converges for any

initial guess.

Now, there is a small catch here that is that if we think of Steepest Descent, convergence

is  function  of  lambda  max  and  lambda  min.  And  in  minimum  in  residue  norm,

convergence is a function of lambda max of A transpose A by lambda min of A transpose

A. For example, lambda is a A is a symmetric matrix, then A transpose and A are same.



So, lambda max by lambda min will be this case lambda square max by lambda square

min of this matrix A.

So, the if the condition number is always greater than 1, the condition number will be

square, so condition number of the residue norm case is much higher, condition spectral

condition number of A transpose A is much higher than spectral condition number of A.

So, the convergence rate will be much smaller convergence rate is in a way inversely

related with the spectral condition number. As the spectral condition number is higher for

residue norm method, the convergence rate will be small slow.

So, though it will converge, we can probably note it down and we will check it, rather

convergence is slower compared to the Steepest Descent or Gauss-Seidel or Jacobi type

of method, because the spectral  condition numbers are higher in of if we consider A

transpose A. However, this is a robust method. As this can take any matrix any non-

singular matrix, and give a solution to that. Till now, the matrices we have considered

before that we are restricted. The algorithms we have considered, we are restricted for

certain class of matrices, but this is a general this is applicable for any general class of

matrix.

So, though it is a slower method and it does lot of calculations, it does a two matrix

vector multiplications, finds the square, norm, etcetera. In each step, the number of steps

are high, but this method converges for any matrix, so this is advantageous. In certain

cases,  where  the  other  methods  will  not  work,  the  residue  norm method  will  be  of

application.

So, this is the best thing is that this is applicable residue norm is applicable for any non-

singular matrix A that is the best part of this let me write down for any non-singular

matrix A, and that is the best part of this particular method. So, in next class, we will see

some do some coding exercise,  and  how the  programs are  written  for  this  different

methods,  and we will  also see  how what  are  the  performance  of  these  methods  for

different matrices.

Thank you.


