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Welcome,  in  last  session  we  are  discussing  about  Projection  Methods  for  iterative

solution  of  Ax is  equal  to  B and we started  our  discussion  considering  the  steepest

descent algorithm. However, what we observed the steepest descent algorithm is only

applicable for symmetric positive definite matrices and we ended the discussion with a

note  that  if  the  matrix  is  not  symmetric  neither  positive  definite  for  or  any for  any

general matrix what can be an equivalent algorithm.

So, before coming into projection methods or a steepest descent algorithm or gradient

search algorithm, which we discussed in last few classes; we discussed about another

class of iterative solvers which are Jacobi and Gauss Seidel or SOR solvers which are

called direct iterative solvers. What we have seen that they are also limited for certain

class  of  matrices  which  are  diagonally  dominant  or  irreducibly  diagonally  dominant

matrices.

So, till now we are yet to find out a method which is applicable for any non any type of

non singular matrix. However, when we have looked into direct solvers we have found

number  of  methods  which  are  applicable  for  any general  non singular  matrices  like

Gauss elimination, LU decomposition; not finding solution of normal equation from few

methods like this. And, Gauss Jordan method is also one of that, Cramer’s rule you can

also find out solution for any non singular matrix.

But, we also found a one method called tri diagonal matrix algorithm, which is a very

first  method.  The number  of  computational  steps  are  extremely  small  which  is  only

applicable for matrices which are tri diagonal matrices. So, but for general direct solvers,

we have seen that they are robust in a sense they can take care of any type of matrices.

However,  the  general  direct  solvers  are  limited  in  a  sense  that  they  need  lot  of

computational  steps.  So,  we looked into  iterative  solvers  and as  we just  said before

iterative solvers the number of solvers will be before are restricted either for diagonally



dominant matrices which are Jacobi Gauss Seidel or SOR matrices or symmetric positive

definite matrix which is the method is steepest descent algorithm.

So, now our question is to find out method for any general solver and we also will like to

get faster solvers; that means, in number of less number of iterations with doing less

number of computational steps you should be able to reach the solution. So, we will look

for a broader class of solvers. This class of solver which you are looking at this stage will

borrow their idea from steepest descent algorithm and we will try to generalize it more

for  general  type  of  matrices  which  are  any  non  singular  matrix.  So,  we  start  our

discussion on general projection methods which are projection based iterative solvers.

(Refer Slide Time: 03:21)

So, you quickly see what we have done in steepest descent method.  Suppose A is a

symmetric and positive definite matrix and b is a vector, we are solving Ax is equal to b

and Jx is a quadratic functional and Jx is equal to half x transpose Ax minus x transpose

b. Then Ax star is equal to b implies that Jx star is less than Jx for all x is equal to x is not

equal to x star for all x. So, finding solution of Ax is equal to b is replaced by finding

minima of the functional Jx and in a sense we can get find this minima iteratively.

So, the we know that is why you do not called it direct iterative solvers because we are

not  iterating  for  solution  of  Ax star  is  equal  to  b rather  we are solving  iterating  for

finding minima of Jx. So, what we do we get a J iso-contour that is the value of J is



constant along this particular surface and then we can see that the value of J reduces

fastest in the direction of minus grad J from here.

So, one thing quickly we can say is that J this if I draw a tangent here this is J constant

line, if I draw a tangent here this is J constant line. So, if I draw a line perpendicular to

tangent or minus grad J this is the direction where J is changing in a fastest way in this

line J is J is constant. So, J is not changing at all along the tangent, along the normal, or

along minus grad J J is changing fastest.

So, you move along minus grad J that is J is radio, we move our x vector along minus

grad J. So, J reduces in the fastest direction and reach somewhere where it becomes

tangent to another iso contour and then change the direction and that way we can keep on

changing the search direction and we will finally, reach J minima. And, at this location

the value of x is the solution of Ax star is equal to b that was the idea of steepest descent

method. We have discussed in detail in last few classes.

(Refer Slide Time: 05:43)

And the question remains that  steepest  descent is  said to be designed for symmetric

positive definite matrix. So, what to do for non symmetric positive definite matrix?



(Refer Slide Time: 06:01)

So, we go to the next slide that, what do we actually do in a steepest descent method? We

choose with an arbitrary X 0 and then find out a direction a vector v which is equal to

minus grad J. This is a we find the value of J here, find the value of J here. So, we write

this as J is equal to constant line, this is J is equal to constant line or J iso contour. Find

minus a grad J which is v and move x along that direction by a certain value alpha v, we

move a certain distance alpha along the alpha into v in this direction and then we will

again change the direction. 

With  an  arbitrary  x  is  equal  to  x  0  find  a  J  modify  x  in  a  direction  v  which  is

perpendicular to J. So, start with an a arbitrary value modify x, in a particular direction

and while modifying x in the in the direction we have chosen the direction which is

perpendicular to J, v is same as r is equal to so v is same as r, r is equal to b minus Ax 0

what we call to be residual. So, the idea is update x from x 0 start with an arbitrary value

x 0 update x from there along a particular direction.

Also in that case allow the residual r which is b minus Ax 0 to remain orthogonal to a

functional space. So, x is updated along certain direction here this direction is r d and

also when updating x allow this value r to remain orthogonal to certain functional space.

Here the space is J constant line it can be a different space in different application also.

So, these two are the basic steps in the philosophy of steepest descent projection method,



that update x in a in along particular direction in during one particular iteration and then

allow the residual to remain orthogonal to a functional space.

What will happen in the next step? We will allow, we will update x in this particular

direction  and  r  will  remain  orthogonal  to  the  previous  r  or  we  will  be  now we be

orthogonal to the new J contour iso contour which is perpendicular to the previous r

direction. So, we will get r k plus 1 which is orthogonal to r k and x k plus 1 is equal to x

k plus alpha into r k. So, update x along one particular  direction and the residual  is

orthogonal to or some functional space this alpha k or this is orthogonal to J k also. 

So, with this idea we will try to generalize an iterative method that x is updated along a

particular direction and the residual is orthogonal to another to one particular functional.

They may be same here they are probably they are same they may not be same and this

will give us a different class of method.

(Refer Slide Time: 09:27)

And this is called a general projection method the theory of general projection method is

that. Let A be a real n into n matrix and K and L be two m dimensional subspaces of R n.

So, they may not be a complete a one d space may not be a complete vector space of R n

their  subspaces  of  R  n  and  their  m  dimension  let  us  assume  their  m  dimensional

subspaces of R n. 



A projection technique onto the subspace K and orthogonal to L is a process that finds an

approximate solution x prime of Ax is equal to b by imposing the condition that x prime

belongs to K. The new solution, the approximate solution the solution we obtain after an

iteration belongs to certain space because we are updating it along particular direction.

So, it belongs to a particular vector space that is the idea. So, x prime belongs to a certain

space and their new residual vector r k plus 1 which is Ax prime minus b is perpendicular

to a orthogonal to a functional space L.

So, there are two spaces x prime belongs to one space and the residual is perpendicular to

another space. So, why because finally, we will when the solution will converge we will

see that the residual is 0 ok. So, then we will take dot product of residual and it will be

anyway you should give a 0 at any point of time. So, we approximately we take a one

space,  one  sub space  in  which  residual  is  orthogonal  to  that  subspace  and the  new

solution is updated along another particular subspace. So, there are two subspaces with

which we can generalize the projection idea. Again I will go back to the previous slide.

(Refer Slide Time: 11:30)

So, this comes from that that x is updated along a particular direction; that means, x

belong  to  the  update  of  x  belong  to  one  particular  subspace  and  the  residual  r  is

orthogonal  to a particular  subspace.  So, there are two subspaces involved in steepest

descent type of algorithm.



In steepest  descent  we can see that  that  x is  the update of x is  along one particular

direction. While I am doing that the residual is remaining orthogonal because residual

will be my new search direction. So, residual is orthogonal to another particular direction

here which is the iso contour of J or the in the previous tangent to the iso contour of J or

previous residual direction.

So,  now  this  statement  does  not  tell  about  any  iterative  technique  it  says  that  one

approximate solution or x prime can be found out that is not the right solution. So, we

have to keep on modifying the approximate solution which will be which will take us to

the best approximated solution where the difference between the actual sol exact solution

and approximate solution is minutely smaller it will it should converge.

So, for an iterative method and this condition is called a Petrov Galerkin condition that

you update find an approximate solution of Ax is equal to b imposing the condition that x

prime the approximate solution x prime belong to a particular subspace k and the new

residual vector is orthogonal to L. So, if we again go back that we can write the for

steepest decent method. What we are doing? I am updating so I have started from some

value x 0 here, I have updated x is equal to x 0 plus alpha V right. I have updated x along

this particular direction v.

And sorry this there is some issue here I think I should wipe it out. Up to when I have

updated till the this particular line becomes tangent to the new functional space and then

the new search direction will be orthogonal to heat or this the new search direction will

be the new residual space r k plus 1 which is orthogonal to this particular direction.



(Refer Slide Time: 14:53)

So, x is updated along one direction and R k plus 1 is orthogonal to another direction

there is there is the idea here; x prime belong to a subspace K and residual vector r is

equal to b minus Ax is orthogonal to L. Here the subspace and K and L are same means

steepest descent algorithm x y belongs to or the it is not exactly x prime in the steepest

descent we will see the iterative application, but if we assume that we start with the gaze

value x is equal to 0. So, x prime will be along be my along the vector b, b minus Ax Ax

is equal to 0. So, along b x prime will be along one particular direction and the updated

residual will be perpendicular to that direction only in steepest descent.

But in a general case x prime belong to one particular a space K and the residual vector

is perpendicular to another particular space or L and L and K may be same or may not be

same that is a different coefficient. If L and K are same which happened in the steepest

descent method, they are called Orthogonal Projection. If they are not same they may be

L may be transformed where transformation of K, L may be completely unrelated with

K. There are several methods we will discuss soon that is called an Oblique Projection.

This steepest descent we can say that L and K are same and both are basically R K or

minus grad J and whatever the way we want to present it.



(Refer Slide Time: 16:21)

Now, if we redefine this method for an iterative to design an iterative method. We will

start with an initial guess x 0 we will find an approximate solution on the new iterate

iterative value x tilde x prime which is x prime is equal to x 0 plus k the update belongs

to  a  certain  space  k  such  that  the  new  residual  b  minus  Ax  prime  is  equal  to  is

perpendicular to L. So, this is the updated value and this update is in along the vector

space  L and this  is  the new residual.  And this  is  remember  that  this  is  during each

iteration, so in the next iteration K and L might change in one particular iteration there

we can see there is 1 space K along which I am updating x. So, I will start with x 0, I will

give some K takes some vector in the vector space K add that with x 0 and find out the

updated vector x t prime.

Now, the residual b minus Ax prime is orthogonal to one particular vector space L. K and

L if they are same we will call that to be orthogonal projection. If K and L are not same

we call them to be oblique projection. So, x tilde x prime is equal to x 0 plus V y where

V is  a  basis  for  K.  So,  what  is  y?  Y is  basically  combination  of  scalars  which  is

multiplied with the basis vector or we can write x prime is equal to x 0 plus delta. Delta

is the amount of change finally, the amount of change which is done to x added to x 0 to

get x prime. So, here we can write that delta belongs to the vector space K, this thing

belongs to the vector space K. And the initial residual R 0 is equal to b minus Ax 0. New

residual R is b minus Ax prime. When we found the new residual we really we do not



bother about the initial residual because our condition is that that new residual is, sorry

our condition is that that new residual is orthogonal to L. 

So, r 0 minus A lambda must be orthogonal to L and we find r is equal to b minus Ax J

prime which is r 0 minus A lambda and this is orthogonal to L. So, now what we will try

to do we will try to find out the basis vectors for L and when we will replace this basis

vectors for L in this equation and take the dot product with the basis vectors of L with r 0

minus b lambda and get it is to be 0. And by that way, we should be able to get some

relationship because if  I look into lambda this lambda is nothing, but V y lambda is

nothing,  but  V y.  So,  we  can  probably  the  next  step  will  be  r  0  minus  A V y  is

perpendicular to L. So, if I get basis vectors of L and take a dot product that should be 0

that will give a give me some idea about y based on the how V and L are related. 

If a L and K are same it will be probably much straightforward to find out y otherwise

also there are some certain ways. So, let us go for one more step here, that is what we

find out that the new residual is r 0 minus A lambda which is orthogonal to a space L; we

have not said anything about L. We know that there is some spaces L forget the steepest

descent where L is equal to R or minus grad J. In general projection method x is updated

along a particular vector space K. Now, this updated x is giving me a residual b minus

Ax updated or b minus r 0 minus a lambda r 0 was the previous residual. This r 0 minus

A lambda is perpendicular to some vector space L.

(Refer Slide Time: 21:17)



And if we look into the projection method, we had an old r 0, what was the last step? R 0

sorry r 0 minus A lambda is perpendicular to L. So, if I subtract a lambda from r 0 we get

the  new  residual  r  new  which  is  perpendicular  to  L.  So,  you  can  write  r  new  is

perpendicular to L. Now, if we think W is the basis of L. So, there are a set of vectors

which define W which is the basis of L we can write W transpose r 0 minus a lambda is

equal to 0 because r new is or. So, we can also write W transpose sorry write that W

transpose r new is equal to 0 because r new is orthogonal to L. And L is spanned by W

vectors  right  this  set  is  called  probably  W  which  are  the  independent  linearly

independent vectors spanning the entire set L.

So, transpose r 0 minus A lambda is equal to 0 and W transpose a lambda is equal to W

transpose r 0.if we started with a guess x 0 r 0 is already known to us what is not known

to us is lambda is delta that because delta is a vector which is along K we do not know

exact value of delta, but delta is a vector which is along k. So, if we know K; we know

that linear combination of the basis of K has given me delta. But what is the exact linear

combination that we do not know and that that is what we are trying to find out. Well

delta is equal to V y; this V V is basis of the space k. 

So, if I if K and L are given we can we know about W and we know about V we do not

know about delta or y. So, now, we write W transpose AV y is equal to W transpose r 0 or

we get y is equal to W transpose AV inverse by W transpose AV inverse W transpose r 0

or we can get once we have got y we can get x tilde x prime is equal to x 0 plus tilde is

equal to x 0 plus Vy x 0 or we can write it down that this is this is equal to x 0 plus W

transpose AV inverse W transpose r 0 multiplied by V right ok.

So, if we now try to see what we have actually done what we have actually done is we

assumed that x tilde is x prime rather is the new updated guess which is an approximate

solution of some equation as Ax is equal to b. Now this solution is obtained iteratively by

updating a guess solution. The question is how should we update the guess solution? The

idea we got from steepest descent algorithm that we should update the guess solution in a

sense we will  minimize  the functional  J;  that  means,  the x will  be updated  along a

direction of gradient of J x will be updated to up to a point till this is tangential to a new

iso contour of J.



After that the new update direction of x will be perpendicular to the previous update

direction of J and this idea we carried that x is updated along a particular line.  This

update of x now maybe we know about the line, but how on that line x will be updated,

what distance we are remember when we are doing steepest descent we are also trying to

find out what is the distance till which you should update x till which we should move

along gradient of J x 0 minus gradient of J x 0.

So, the we should move up to a distance while updating it. So, that the new residual is

orthogonal to certain plane. So, we have two spaces L and k the basis vectors W and V

and we are trying to update x in a way that x is updated along k. So, x is equal to x 0 plus

V y.V is the basis of K and this y will come from the fact that the new residual b minus

ax is perpendicular to some space W or W transpose b minus ax is equal to 0 though it

looks very abstract in next session we will consider some like simplified case like we

will take a one particular vector in V and one particular vector in W we will consider

them to be one d subspaces.

And we will see that a lot of formulations come out, when we think of that. The only

thing is that probably we will take from the idea of general projection method I said like

this might look little abstract and the later formulations will be little more abstract. When

you will  go to kind of space type of methods,  but we are updating x in an iterative

method in a direction that is given some along certain in that in a direction which is a

subspace in Rm.

When we are updating it we are taking care at that b minus Ax is the new after we update

what the b minus Ax will get is the orthogonal to another subspace. So, we probably we

will have decided about these two subspaces and we will see that this conditions hold

and  then  we  will  say  that  my  update  has  been  fulfilled  that  b  minus  a  updater  is

completed the iteration particulars iteration step is completed. I have updated x such that

the new b minus Ax is a orthogonal to a given plane and we will continue this and we

will see later we can show that this method actually converges.

So, one very important idea is that when we will go through number of steps in that

direction finally, where we will end we will update x by infinite small amount. We will

update x almost the K has a almost become the 0 vector we will update x by a very small



amount and the new update the new b minus Ax is also 0 vector if x, If x plus x is equal

to x plus alpha V right x is equal to x plus alpha V.

So, or a is equal to x plus delta if delta becomes 0 in that case my b minus Ax x prime b

minus Ax is also 0 vector. So, when the update has become a 0 vector b minus Ax will

also become 0 vectors and then that is on the iterations will converge. We will we will

look into it in detail and we will see you and under what conditions for which type of

matrices these iterations converge.

In next class we will start from here we will consider a particular subspace along which x

is being updated we will consider another particular subspace to which the residual will

be orthogonal. And, then we will try to see that that lead gives us a particular iterative

scheme. For example, we will get steepest descent algorithm which we discussed last

few classes as one by one particular choice of the spaces K and L. And, we will also see

that this iterative scheme will converge to the right result that we will look into the next

class.

Thank you.


