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Welcome so, we are discussing about the Steepest Descent Algorithm where we have

seen that solving a problem Ax is equal to b is equivalent to find out minima of the

functional J X where J X is defined as x transpose Ax minus x transpose b. And, in order

to propose an iterative method for solving for finding the minima of J X we discussed

about the gradient such algorithm that choose any value X 0 find J X 0 there and then

find out the gradient of J and move along minus gradient of J.

And move up to a certain distance where this along with J reduces on that particular line

and this distance is measured by parameter alpha we discussed about how to find out

alpha till which J reduces along that line. And then when you see that J has reached a

local minima along that particular line change the direction and go to the another take

another direction.

(Refer Slide Time: 01:20)

So, roughly it is this particular method that start with one particular X 0 move along one

direction  and then  see  that,  this  is  a  local  minima  of  J  from here  you take  another

direction and that is how you approach the global minima.



And  this  is  the  parameter  alpha  that;  distance  should  be  covered  in  particular  one

particular search direction. So, that the search is optimum and in least number of steps

we reach the local minima. Now we thought about taking this into a solver and writing

and proposing an algorithm for iteratively solving x is equal to b or finding J minima

using this.
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Which is called the steepest descent algorithm let k be the k th iteration value and the

error is defined as d k is x x k minus x x star where, x star is the solution of Ax star is

equal to b, x star is the where we have the solution x star is equal to b that is the location

where J is minima.

So, this let x star be the point where J is minimal and d k is the error; that means, we

considered a it guess value x k or k th iteration value x k d k is the error which is x k

minus x star. The residual is defined as b minus Ax k, if x k is equal to x star we reach

the right value b minus Ax is equal to 0.

So, residual is 0 till it is not reached this is the non 0 value and we define residual as b

minus Ax k or this is equal to b into A into d k why? Because b minus Ax k is equal to b

minus Ax k minus b minus Ax star because this is 0. So, this is if you duel is d k is equal

to sorry, there is a there is a small sign convention small sign convention issue r k is b

minus Ax k and this is so.



So, let us defined this is equal to x star minus x this is minus d k then it should come out.

So, this is minus of A into x k minus x star which is A into d k. So, let us define minus d

k is x k minus x star, new iteration guess will be updated as x k plus 1 is equal to x k plus

alpha k into minus gradient of J x is equal to x k.

So, it started with a value of x k and will update it to the new iteration x k plus1. And this

is this is how because we are also when we are in thinking of solving x is equal to b we

are also trying to find out the minima of J. So, you should go along minus grad J x k and

we found out there is a parameter alpha k by which we should go in that direction.
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Now, have J x is equal to half of x transpose Ax minus b grad J is equal to Ax minus b as

A is a symmetric matrix, x k plus 1 is equal to alpha k into minus grad J of x is equal to x

k which is evaluated there x ks in that earlier and minus grad J is b grad J is A x minus b.

So, minus grad J is grad J is A x minus b therefore, minus grad J is b minus Ax. So, x k

plus 1 into alpha k into b minus A x k and we have defined b minus A x k was r k. So,

this is x k plus 1 is equal to x k into x k x k plus 1 is equal to x k plus alpha k r k, r k is

the same vector as the vector direction as the same vector in the direction v r k and v are

same. It because we have written earlier v is equal to minus grad J now we can see that v

is same as r k.



So, I have seen that alpha is equal to v if v is minus grad J, now we have seen that minus

grad J is  r  k.  So, r k and v are same alpha is  equal to v transpose b minus Ax k v

transpose Av. So, we will get alpha is equal to r k transpose r k and v are same b minus

Ax k by r k transpose Ar k which is r k transpose r k into r k transpose Ar k. And there is

one observation which is r k and r k plus 1 are orthogonal why? Because, grad J is the

direction in which J reduces first test, grad J is perpendicular to the J contour where it

was evaluated.

Now, we move till  J is minima or grad J this is tangential  to J contour to tangential

through J contour at x k plus 1 this is x k plus 1. The new direction is minus gradient of J

x at x k plus 1 is perpendicular to the tangent. So, this grad J x k and grad J x k plus 1

must be perpendicular to each other. Therefore, r k and r k plus 1 are orthogonal vectors.

So, nevertheless we found out that for one particular iteration how to find out alpha k?
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So, the steepest descent method will be start with one guess value x 0 and then do an

iteration k is equal to 0 1 2 until it converges compute r r k is equal to b minus Ax k

compute alpha k which is r k transpose r k by r k transpose Ar k. Update x k plus 1 is

equal to x k plus alpha k r k and check if r k is less than an epsilon is a small value if the

residual b minus A I have to see whether b minus ax is equal to 0 if b minus Ax is A very

small value.



Then sorry if not a very small value if it is a very small value, then it is iterated if it is not

a very small value. Then set k is equal to k plus 1 and go to the 2 and do the try for the

convergence of the iterations.

If else if this value is very small r k is a very small number, then you say that iterations

are convergence you have reached the right solution.  So, this  is  roughly the steepest

descent algorithm what you discussed here and for a symmetric positive definite matrix,

we  can  utilize  this  b  irrespective  of  the  way  it  has  been  represented  as  a  diagonal

dominant matrix or not only.

 Only we have to see that this matrix is symmetric as well as positive definite, then we

can utilize this method. This is in general a faster method for symmetric positive definite

material  this is a faster method, then up to gauss Seidel gauss Seidel SOR or Jacobi

method.

However, when we look into this method, we see that if we try to think do a computer

program here there are two matrix vector multiplication here A into x and A into r. So, if

I have a million by mill 10 to the power 6 by 10 to the power 6 matrix, each of these

steps needs multiplication with each element of the matrix with the each component of

the vector.

So, in a sense 10 to the power 6 into 10 to the power 6 multiplications are needed, each

row needs 10 to the power 6 multiplications and they 10 to the power 6 rows.

So, this particular method needs in gauss Seidel in each iteration you only have to do one

Ax multiplication because, xi is equal to b minus sum of ai ijz j at the older value except

the diagonal term. So, there is only one matrix vector multiplication there are two matrix

vector multiplication.

So, if I try to do a computer program write a computer program out of it though the

number of steps will be less than gauss Seidel; however, the calculations will be very

high for large matrices. Because they are doing in each iteration the calculations will be

very high for the large matrices because, they are doing lot of the Gauss Seidel is on

doing only once matrix  vector multiplication whereas,  the steepest  descent will  do it

twice. So, you need to modify this algorithm.



So,  you seen  that  there  are  two matrix  vector  multiplications  and two vector  vector

product vector vector is r k transpose r k and r k transpose Ar k which is in again another

vector is the vector vector product.

However, they are less time consuming because if there are 10 to the power 6 rows their

main only 10 to the power 6 operations are there or matrix vector is 10 to the power 6

into  10 to  the  power 6 10 to  the  power  12 operations  are  there  is  a  very computer

computationally  costly  operation  if  there  is  a  matrix  vector  multiplication  it  is  done

twice.

So,  we  have  to  see  how can  we  reduce  the  cost  of  the  computation  or  number  of

operations, how can we improve the algorithm little bit betters. So, that you can at least

avoid one matrix vector multiplication here. So, that for million by million matrix 10 to

the  power  12  floating  point  operations  are  saved.  If  I  can  do  one  matrix  vector

multiplications here seen to look into some modifications some possible modifications

into  the  steepest  descent  method  before  we  proposed  an  algorithm  for  computer

programs.

So, the idea is again if I go back to the previous slide that ah; every why I need to matrix

vector multiplication one is needed to find alpha, another is needed to find r and every

time we need to do one matrix multiply vector multiplication to find the updated value of

r, r k is equal to b minus Ax k once we update x into row matrix vector multiplication

here that is actually replaced here.



(Refer Slide Time: 13:31)

Updating r k plus 1 is equal to r k plus 1 is equal to b minus ax k plus 1, which is b minus

ax kb alpha k r k is b minus Ax k alpha k ark that is r k minus alpha k Ar k.

And if I again I go back to the previous slide Ar k is needed also for computing of alpha

k plus 1. So, if r k plus 1 can be computed using Ar k, then this is the only matrix vector

multiplication  which  is  common both to  calculation  of  r  k  plus  1  as  well  as  to  the

computation of alpha k.

And in that light we will try to modify it will see that this is also needed for computing

alpha k.  So,  while computing  alpha k will  store a  Ar k and you will  utilize  this  for

updating r k plus 1.
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The final steepest descent algorithm method algorithm will be start with a guess value of

x is equal to x 0 compute b minus Ax and r is equal to b minus Ax and define a new

variable  p  which  is  Ar  p  will  be  utilized  later.  And  until  convergence;  that  means,

convergence means that until r is less than epsilon, epsilon is a very small number do

compute alpha which is r transpose r into r transpose p.

So, alpha is equal to r transpose r r transpose Ar and now Ar has been substituted by p

update x is equal to this is because the same variable x which is overwritten as x is equal

to x plus alpha. And that is why we written x arrow is equal to x plus alpha r; this is a

way to write something which is getting overwritten. Update x is equal to x as x plus

alpha update r so, r k plus 1 is equal to r k minus alpha k Ar evaluated at k th level.

So, this is r k minus alpha k p k p k. So, update r is equal to r minus alpha p, compute p

is equal to Ar and then if the convergence is not done end do means you again come back

here and further with this the new value of p compute alpha update x update r and repeat

this loop until you see that r is less than mod r is less than epsilon or convergence has

been achieved.

So,  this  is  the  steepest  descent  method  algorithm and  this  is  applicable  only  for  A

symmetric what happens if A is not symmetric positive definite. Then the problem we are

solving if this problem what we are solving here is not finding x is equal to b solving or J

is minima. The problem we are solving is not J is minimize not now solving x is equal to



b something different is, if it is not symmetric we are solving half of A plus a transpose x

is equal to b a different problem.

So, we are trying to find out minima of something which is not A x is solving x is equal

to b. However, where convergence is based on mod r is less than epsilon so, either it will

not converge, but if it converges then it will take us to the same solution that mod r is

less than epsilon so, x is equal to b.

So, in case the matrix is not symmetric or matrix is little not the asymmetricity is not

very high a i k is probably a k i plus a small number. In that case, it still converges, but it

takes lot of lot many iteration does not take less number of iterations because we are not

using the right solution algorithm for that cases.

However, if  only the matrix is  symmetric  positive definite  then using this  method is

advantageous  in  terms  that  this  the  formulation  is  complicated  one,  program is  also

probably little complicated than the Gauss Seidel method. However, this is advantageous

because it sub times the number of steps are small number of iterations are small some

calculations in each relation is comparable to Gauss Seidel.

So, overall computational cost is less if we apply this method, only the if the matrix is

symmetric positive definite, then application of this method is worthwhile. Otherwise it

might give us the right result because, we are looking for this criteria that mod r less than

epsilon; that means, b minus Ax is less than epsilon, we are looking into this right in

here. So, it might give if it converges it will give us right it shows that it will take as the

x is equal to b location.

But, it can take a very high number of iterations in the matrix is not symmetric positive

definite.  So, this if  I  have a symmetric  positive definite  matrix,  this  is  the algorithm

through which we will see later like Gauss Seidel have or SOR how a computer program

can be developed. And we can also demonstrate that the number of iterations and as well

as computational time is much small than Gauss Seidel or Jacobi or SOR method for a

symmetric positive definite matrix.

So, we will see in later class that how we can develop a computer program using this and

this.
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And interestingly this is only one matrix vector multiplication earlier, we had two matrix

vector  multiplication.  So,  one  has  been  reduced  there  is  only  one  matrix  vector

multiplication here.

(Refer Slide Time: 20:17)

Now, we need to look into the convergence of this method that is for two d I can give

you some visualization that iteratively we if we change the size direction you should

approach to the J minima or this method should converge.



Now, there are there are certain theorems and analysis which can show that the error

convergence means; the error will we smaller x minus x star is smaller than is there or x

k  minus  extent  this  error. Will  finally, reduce  to  a  very small  number  given certain

conditions, that let a be the theorem for convergence tells that let A be and SPD matrix,

that is a symmetric positive definite matrix.

Then the a norm of the error vector which is x k minus x star x star is the exact solution

of x is equal to b. Generated by steepest descent algorithm satisfy the relation mod d k

plus 1 A norm, A norm of any vector is defined as E transpose AE.

So, a d k plus 1 transpose d k plus so, this is basically d I am sorry issue d k plus 1

transpose A A norm of d k plus 1 or let us take d k it is A norm is basically given as d k

transpose Ad k. This norm is satisfy the relation is less than equal to lambda max minus

lambda min divided by lambda max plus lambda min of d k A.

So, if we have any always d k plus 1 is less than d k A, the error x k minus x star at any

iteration  is  always  less  than  the  error  in  the  previous  iteration.  Therefore,  it  should

converge to a finally, this error should be a small value and it should converge to a small

small number it should converge to the right solution. However, the rate of convergence

here depends on not on the spectral radius rather the maximum and minimum lambda.

So, the relation the difference of the maximum eigenvalue and minimum eigenvalue of

this lambda max and lambda min are there is no iteration matrix are the eigenvalues of

the matrix A only. So, it depends on the eigenvalues of the matrix A. So, this algorithm

and this shows that this algorithm will converge for any guess value x 0, because this is

always a number less than 1 therefore, d k plus 1 is always A radius always reducing.

So, finally, the error should go down it will with start with some value it will keep on the

magnitude modulus of error is always reduced reducing. So, it will be a small number

and this is this is a positive number right because, A is SPD this is always greater than 0,

as A is SPD.

So, this number will be greater than 0 and reducing; that means, that if this is d k A and

this is k this will asymptotically approach 0. It will never be exactly 0 it will be always

greater than 0, but it will be a very small number and then it will be finally, 0. So, this

algorithm will converge for any initial guess x 0.
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This is a mistake here and this should be d k, I should correct it in the original notes also,

this is d k. So, you can see d k plus 1 in our means lambda max minus lambda min of by

lambda max plus lambda min of d k, which is lambda max by lambda min minus 1 by

lambda max plus lambda min plus 1 of d k.

And spectral  condition  number group defined it  earlier  of any matrix  is  the ratio  of

lambda max and lambda min, now we have said that as; small as the condition number.

Therefore, lambda max and lambda min are closer it is easier good for matrix solver. So,

you are also seeing here and this is always greater than so, basically this is absolute all

these are absolute values. So, this is always greater than 1, all this should be in absolute

value.

So, this is always greater than equal to 1. So, as this value is close to 1, this number is

smaller is 1.000 it is very small number. So, in very few steps the d k plus 1 there should

approach 0. So, if convergence spectral radius is the convergence rate depends on the

spectral  condition number. Spectral  condition number low spectral  condition number;

that means faster convergence.

And when discussing about condition number we have discussed that, if the condition

number is small then the convergence is faster. If lambda max and lambda min are closed

at the condition number are small convergence is faster and we can see if this number is



smaller will reach the convergence faster. So, low spectral condition number will give a

faster convergence here.

So, this is the first time we discuss earlier discussed about condition number, we are

seeing one example of condition number in first in the rate of convergence of the matrix

particular matrix solver, which is the steepest descent method matrix solver ok.

 So, this method will converge; that means, is started with some geometric functional,

now we can see  that  once  we have  derived  the  algorithm.  This  algorithm converge

starting with any guess value x 0, this algorithm should take us to the convert solution of

x is equal to b and that is only for symmetric positive definite matrix.

Now, the  question  is  that  the  entire  exercise  is  only devoted  for  symmetric  positive

definite matrix. A matrix may not be symmetric in reality we deal with number of cases

where  we get  a  symmetric  matrices,  for  example,  if  we think  of  a  finite  difference

equation that we are discussing earlier and if we use non uniform grid spacing the matrix

will be asymmetric.

So, how can we modify this equation for an asymmetric matrix, as well as in a general

case there can be a negative definite matrix, for positive, positive definite matrix that is a

solution if the matrix is not positive definite. If there is a negative eigenvalue what is

how to solve this matrix? This method does not cover those matrices. Therefore, it is still

now  restricted  only  to  a  closed  class  of  method,  a  small  class  of  method  we  use

symmetric positive definite.

Now, next goal will be if we can extend this method for general matrices, which are not

symmetric and non positive definite matrix. And what we will discuss for that there is

called general projection methods. Instead of having a method for searching to gradients

such approaching the minimum value of a functional will see a more generalized method

where probably the functional is little different we are trying to find out minima of some

other  function.  But  solving  a  matrix  which  is  not  symmetric  or  which  may  not  be

positive  definite  also,  extension  of  this  method  will  take  us  to  general  projection

methods,  which can solve a larger  class of matrices  we will  so,  see that  in the next

classes.

Thank you. 


