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Welcome. In the last few sessions, I try to introduce Jacobi and Gauss-Seidel methods,

which are the basic iterative solvers. And then, we also discussed about the properties of

the matrix A for which this solvers should work. And we have seen that the matrix has to

be  diagonally  dominant  or  irreducibly  diagonally  dominant  that  means,  diagonal

dominant means all the diagonal terms must be greater than sum absolute value of all the

diagonal terms must be greater than sum of absolute value of the off diagonals for each

particular row.

And diagonal  irreducibly  diagonally  dominance  means,  the that  sum the all  absolute

value of diagonal term must be greater than equal to sum of the absolute values of the off

diagonal terms for each particular row. And there should be at least one row for which it

is not greater than equal to rather it is greater than the sum of the off diagonal terms, that

I was absolute value of the diagonal term is greater than the sum of the absolute value of

the off diagonals.

And for this cases, Jacobi and Gauss-Seidel works. And Jacobi and Gauss-Seidel works

for these cases, because we looked into the iteration matrix G, iteration matrix G will

have a spectral radius less than 1, which ensure we will ensure that the matrix norm of G

will be less than 1. And as we will do a number of iterations, the initial error which will

be multiplied by matrix norm of G to the power k; k is a large number, which this will be

a very small number. Therefore, it should converge the error should be very close to 0,

and it should converge to the right solution.

And if it is converges that means, if the guess after now a large number of iteration, the

solution converges that means, the guess an updated value has very small difference in

between them. It is must converge to the right solution that is also property of Jacobi and

Gauss-Seidel.



So, now what we will  do, we will  do some numerical  experiments  using Jacobi  and

Gauss-Seidel. We also introduce the terms convergence rate, convergence factor, and I

have seen that it depends on the matrix G, it depends how is splitting the main matrix say

the only condition for the we are solving A x is equal to b. The only condition on the

main  matrix  A is  that,  it  has  to  be  diagonally  dominant  or  irreducibly  diagonally

dominant.

Now, it depends how are we splitting the matrix A to get the matrix G. And based on that,

we will get the eigenvalues of G the largest eigenvalue is the spectral radius, which is

also a measure of the convergence factor as well as convergence rate of the iterative

scheme. So, and we will tell us how fast the iterations will converge. So, what will do,

we do is called numerical experiments that means, we will take few matrices and do

experiment with these matrices. So, we will try to ran Jacobi and Gauss-Seidel on this

matrices.

As well as we will see, how are there how are there G matrices, what are the spectral

radius of G matrix, what is the convergence factor or convergence rate, so that we can

say a priory looking into the G matrix, we should be able to tell that whether they will

converge fast, whether they will at all converge or not etcetera.

(Refer Slide Time: 03:42)

So, for this numerical experiments, we have chosen particular matrix, which is the matrix

generated as finite difference approximation of d 2 T d x square is equal to 0. We have



discussed about how to convert a differential equation into a matrix equation, exactly

data has been done here. And the boundary condition T x is 0 to 1, boundary condition is

T is equal to 0, it is 0, T is equal to 1 that value is 1. And we now, so this will give

essentially a tridiagonal system, we varied the number of intervals and got large number

of points, and got larger matrix systems.

So, a tridiagonal matrix is obtained. Matrix size is varied by number varying the number

of grid points or number of intervals, and we got different matrices. But, the matrices

will  essentially  look like a tridiagonal  matrix for this  is  an example of a the 8 by 8

matrix. However, here we consider 10 by 10, 20 by 20, 40 by 40 matrices. And then with

this matrix, we ran a Gauss-Seidel or Jacobi program. Later, we will also discuss how to

write this program. So, we have to implement a Gauss-Seidel or Jacobi into a computer

program, we ran a program.

And noted, what are the number of iterations to solve it. Also noted into the G matrix,

which comes out of so, this is basically how the A matrix looks like here. But, this is 8 by

8, we have taken several matrices. So, seen how is the G matrix, and then try to find out

the eigenvalues of the G matrix from which we can get the spectral radius, and see how

is the convergence property.

(Refer Slide Time: 05:27)

So, matrices are solved using Jacobi and Gauss-Seidel method, because this is doing

experiment  with  the  matrices  and  the  method  And  but,  this  is  not  experiment  in



hardware, we call it numerical experiment. The spectral radius of matrix G, convergence

rate convergence rate is log minus logarithm of the convergence factor of the spectral

radius, and the number of iteration, and noted for different sizes of the matrices.

(Refer Slide Time: 05:53)

So, for 10 by 10 matrix for Jacobi iteration, the spectral radius is 0.94632; for Gauss-

Seidel, the spectral radius is 0.89533. So, for Gauss-Seidel, the spectral radius is smaller.

The  convergence  rate  is  0.05517  for  Jacobi,  and  for  Gauss-Seidel  is  0.11034.  So,

convergence rate is almost double in case of Gauss-Seidel than Jacobi. And this is due to

the fact, that the spectral radius is smaller.

So, if the convergence is double, the rate will be double, speed will be faster; so, the

number of iterations will be small, faster it will converge. And we can see that this is

almost  have,  if  we  need  200  iterations  for  Jacobi  for  Gauss-Seidel,  we  need  106

iterations.  So,  there is  a  relation between convergence rate  and number of iterations.

Roughly if we multiply convergence rate with number of iterations, there that is roughly

constant, at least in this case. In other cases, we will also see at least for same size of

matrix.

So, once we have a method in a Gauss-Seidel, we have a laser spectral radius, therefore

the convergence will be faster the number of iterations so, rho G is also convergence

factor right rho G is also convergence factor general convergence factor. So, if this is

smaller, the iterations will we need less number of iterations, the scheme will be faster.



Now, we go to 20 into 20, we can see similar thing. The spectral radius of Jacobi is

0.98645, cell in not lot more iterations spectral radius is very close to 1. The convergence

rate is 0.101364. The Gauss-Seidel spectral radius is 0.973, convergence rate is 0.027.

And the number of iterations are in almost close to half of each other 709 in Jacobi, and

374 in Gauss-Seidel.

And now, we can also see the also you can see that for convergence rate in 10 into 10

Jacobi is 0.055, it added in Gauss-Seidel is 0.013 nearly four times, convergence rate is

reduced by nearly four times. And iteration number is increased by 23.5 times. So, there

is a relation between convergence rate and iteration number for similar type of matrices.

If  we increase  40 into 40,  the Jacobi  converse spectral  radius  is  very high 0.99661,

convergence  radius  is  0.0034.  Gauss-Seidel  0.99324,  convergence  radius  is  0.0068,

because the iteration number is very high. I think this is swiped, this is swiped this will

be well change that in the later slide, this is 2435 this is 1291 this is (Refer Time: 09:02)

while making the table.

So, because the iteration spectral radius is very high very close to 1, we need a very large

number of iterations to 2435 iterations here. And in Gauss-Seidel, we need it is also high,

we need 1200 iterations. So, as the spectral radius is increasing, we are also needing

large number of iterations. However, Jacobi consistently give larger spectral radius than

Gauss-Seidel, and it consistently takes more number of iterations than Gauss-Seidel. And

the convergence rate is reversed in both the cases.

So, the observations are, largest eigenvalues or the spectral radius increases with matrix

size. Matrix 20 into 20, eigenvalue largest eigenvalue is more. And spectral radius is and

because  largest  eigenvalue  increases,  spectral  radius  also  increases,  and  number  of

iterations are more. Spectral radius is higher for Jacobi, then than Gauss-Seidel. And we

when proposing Gauss-Seidel, almost intuitively you propose that if we can use some of

the iterative values some of the updated values, the iteration should converge faster. So,

this is an almost intuitive all actually intuitive proposition, however we can see that it is

actually giving faster convergence. And why is it giving faster convergence, because in

the iteration matrix level, the spectral radius has been reduced well.

The 3rd observation is that number of iterations required for convergence is strongly

related with convergence rate. Almost if we have like here convergence rate is almost



twice for Jacobi and Gauss-Seidel, and the number of iterations is again almost half in

Gauss-Seidel  compared  to  Jacobi.  So,  larger  its  convergence  rate  and  number  of

iterations are related with each other. For a same matrix, Jacobi gives higher spectral

radius,  therefore slower convergence rate compared to Gauss-Seidel.  And as we will

increase matrix size, the largest eigenvalue increases, convergence rate decreases.

This is actually very important the first observation, because we will come maybe at the

very end of this course, when we will discuss about what is called multi grid, we will

look into large matrix size issues with larger matrix size. But, if we are increasing larger

matrix size, we are taking lot of grid points. You were taking lot of grid points, you are

doing less numerical errors in terms of the deceleration error. 

However, the number of iterations increase, and the computational cost increase. Why

the number of iterations increase, because the eigenvalue of the largest eigenvalue of the

G matrix or spectral radius of the G matrix increases, if we take large matrix. So, large

matrix many number of grid points will give us accurate result, but it will be a slow

process, and the computational cost will be high.

(Refer Slide Time: 12:04)

So, now let us look into the convergence in detail. Let us run a Gauss-Seidel code for a

diagonally dominant a small matrix 3 by 3 diagonally dominant matrix. We look into the

convergence in terms of L infinity norm of the residual b minus A x, and we will also

look into the difference of x k plus 1 minus x k.



The residual initially start with some guess x, x is equal to 0. First iteration, residual is

1.24, and x k plus 1 minus x k is 0.45. The next case, we use the updated x, the residual

becomes 0.42, and the difference between x x k plus 1 minus x k becomes 0.248.

So, as this difference decreases we can see as this difference decreases, the residual also

decreases. And this difference decreases asymptotically at the end, x k plus 1 minus x k

is 10 to the power minus 9 and the residual is 10 to the power minus 8. We will say that

the difference this has converged. So, A x minus the difference between b minus A x

which should be actually 0 is also practically 0, because we are solving A x is equal to b.

So, this should also come to 0, as well as this also should go to 0 for convergence and

accuracy. So, as a solution becomes accurate, the difference goes to 0.

(Refer Slide Time: 12:42)

Now, then make few observations from that. That both the parameters x k plus 1 minus x

k x k plus 1 minus x k and residual, both these parameters monotonically reduced to 0.

These are the L infinity norm that is the largest value of the both these are vectors, so

largest component of the vector. Both these parameters monotonically reduce to 0, there

is no oscillation. It is never increasing, it is continuously reducing to 0.

So, for Gauss-Seidel or Jacobi or all something like these direct basic iterative methods,

the errors or the residuals must not oscillate, they must monotonically go to 0. If there is

something different, if it is oscillating, then there is some problem in the implementation.



Why, because every time this residual is being multiplied by G to the power k, which is

reducing the norm of the vector.

The difference x k plus 1 minus x k is correlated with r is equal to b minus A x k b minus

A x k. As the residual and the difference is correlated in a sense, if this is reducing, this is

also reducing. Like as the smaller the value of x k plus 1 minus x k is being like, this is

smaller than this value. Therefore, the residual is also smaller than this value, so they are

related.

Interestingly, the residual  as  well  as this  difference,  the rate  of slowing down is  not

reduces with time. For example, here this difference reduces by 0.21, in the next step this

difference reduces by 0.17 something like that. Here this difference reduces by 0.3 into

10 to the power minus 7. Here this difference reduces by something order of 10 to the

power minus 9. So, the rate at which the differences are reducing is also slowing down

with number of iterations.

So, if I say that the that this is the x star and I start up started with x 0, and this is the

number of iterations, this is x star this is x 0. This kind of asymptotically approaches it,

the rate slows down with time. It is an important observation here. However, so this is

what were we gating using Gauss-Seidel or this particular case is I think for (Refer Time:

16:28) this particular case is for a Gauss-Seidel solver, these for a Gauss-Seidel solver. 

For Jacobi it will give similar result, but we will need a more number of iterations the

rate at which the residual falls down is smaller because G has a larger at the spectral

radius.  However, so what do you see that they are following certain pattern and this

pattern  is  determined  by  how  is  G  what  are  the  eigenvalues  of  G  being  a  largest

eigenvalue of G in Gauss-Seidel or Jacobi method.

Now, our question becomes that can we improve it, can we increase the spectral radius

through some splitting will not be intuitively we found out 1 splitting which is Gauss-

Seidel can we have some other splitting through which we can improve the convergence

rate.

(Refer Slide Time: 17:23)



How to improve convergence? Jacobi or Gauss-Seidel gives x k plus 1 is equal to G x k

plus f we will think of some and this G comes out splitting of a is equal to a is equal to a

minus n which is a minus d minus d minus n minus f or d minus n minus f something

like that and then forming m inverse n as G. Now, we will try to A is equal to m minus n

m inverse n is equal to G that is the idea we followed here. Now, if we try to improve

convergence that means, if we try to take m and n in some different way, so that the G

has a smaller spectral radius can we do that.

So, again we will start with some intuitive idea here and we will see the effect in the

spectral radius later. So, what we do at every iteration step is that x k plus 1 minus x k is

equal to G x k minus x k plus f.  So, after  every iteration step x k plus 1 this is the

iteration step is  modified  this  is  the error be difference between consecutive guesses

updates. The x k plus 1 is modified by this term G minus I x k plus f.
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Now, if we go to my previous slide what was looking here is that that this is this is G

minus I x k plus f. Why is it taking so much time so convergence because this value is

reducing with each iteration this value is not a large value this is a very small value. Had

this been of larger value we could have achieve the solution we could have conversed to

the right solution in a fast manner. Or I showed that this is approaching this the actual

solution x star x 0 in something like this, instead if we can use some faster solution or

some faster way to converge it.

So, what we will do here we will look into this difference and if you can increase this

difference  because  the  it  every  time we are  trying to  approach the  final  solution  by

adding some value with x k and getting x k plus 1. So, if what are we adding here is G

minus I x k plus f in Gauss-Seidel and Jacobi. If we can increase this or if we can scale

this so, this is the difference that x covers in a particular iteration till it convergence to

the exact solution. If x k plus 1 minus x k can be increased at each iteration steps number

of iterations will be reduced. This goes through a very very simple linear logic; if we can

increase this value then x k plus 1 will be further updated. 

So, it converges to the right result there can be some cons also it might not converge it

may diverge. It is increased so much, there it is never coming back. Let us see what

happens  here.  And this  method  is  called  a  successive  over  relaxation  that  you  over

relaxed the solution you are updating the solution using some relation from the using

gauge value you are updating the solution. The increase the amount of update it more

over relaxation updating update.
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So, Jacobi Gauss-Seidel step we will look like this and over relaxation step will be like

this value is multiplied into omega G I this is this is under a bracket omega into G minus

i x k and omega greater than 1. So, at each iteration step update x as x k plus 1 is equal to

x k omega G minus i x k sorry plus f this will be plus f (Refer Time: 21:59). The SOR if

we write it down by D D and I SOR will be d minus omega e x k plus 1 is equal to

omega f plus 1 minus w d x k plus omega b. And the iteration matrix or x k plus 1 is

equal to D minus omega inverse w F plus 1 minus or 1 D x k plus D minus omega

inverse omega b. So, it is nothing but they follow this step x k plus 1 is equal to x k G G

minus I x k plus x.

So, find out the updated value, what is the difference between the updated value and

gauges multiplied by some factor omega which is greater than 1. And then add this with

the gauge value this  is  your new update value.  And this  is  equivalent  to  writing the

matrix like this. So, the G matrix iteration matrix is D minus omega E inverse omega F

plus I minus w omega D. In case omega is equal to 1, this is not over relaxation this is

becomes to the Jacobi or Gauss-Seidel step. We can check that this D minus E inverse f

plus D this becomes the Jacobi step in case omega is equal to 1. This is this is sorry

Gauss-Seidel step over relaxation is applied over Gauss-Seidel.

In case omega is equal to 1, this goes to Gauss-Seidel. What happens in case omega is

equal to 0 and check that. So, this is D inverse f plus D right and f plus D is again D is



equal to d minus c minus f is equal to a. So, iteration does not progress it stops there is

no update. So, what should be at omega is equal to 0 1, it is Gauss-Seidel; omega less

than 1 it is under relax the solution is become slower. So, omega must be greater than 1

what should be the right value of omega for which we will.

(Refer Slide Time: 24:18)

For  convergence  we need the  spectral  radius  of  G less  than  1.  The theorem if  A is

symmetric with positive diagonal element an omega is in between 0 to 2 successive over

relaxation will converge for any x 0, if A is positive definite, this is a theorem like that.

So, if omega greater than 2 successive efficient will not converge the theorem is not

satisfied. So, it will diverge. 

If omega is equal to 1 successive it is same as basic Gauss-Seidel or Jacobi method. If it

is applied over Gauss-Seidel it is usually it is applied over Gauss-Seidel because Gauss-

Seidel is better method than Jacobi. And we want to further improve convergence. So,

we imply successive discussion over the Gauss-Seidel.

If omega is less than 2, successive omega is less than 1 I am sorry, omega is less than 1

successive relaxation is actually under relaxing the iterations are increasing the number

of  iterations.  So,  the  question  is  that  omega  should  be  between:  1  to  2  for  better

convergence omega for better convergence.



So, the question is what should be the value of the omega. What is the optimum value of

omega? And in that in which case and what is the optimum value of omega when rho G

is least will have best convergence rate. So, to either look into the G matrix and c with

omega c when it is having the least over relaxation factor least spectral radius.

So, the so we said that that is the best omega is in between 1 to 2 in 2 omega will start

diverging in 1 it is same as Gauss-Seidel. So, best omega should be in between 1 to 2.

However, there is 1 more theorem which helps us to determine what should be the value

of optimum omega.
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If A be a consistently ordered matrix such that the diagonal element is non-zero there is a

definition of consistently ordered matrix will not come here, but all these matrices we

deal with is usually consistently ordered matrix. And omega is non-zero and if lambda is

a non-zero eigenvalue of the SOR iteration matrix c, there is a scalar mu which satisfies

lambda plus omega minus 1 whole square is equal to lambda square omega square mu

square then mu is the eigenvalue of the iteration matrix Jacobi iteration matrix B.

So, Jacobi iteration matrix eigenvalue and the S 1 matrix eigenvalue are related by the

term omega. So, and using this we can find out for which omega if we know already the

iteration matrix we can Jacobi iteration actual matrix we can find out the Jacobi iteration

matrix eigenvalue.  And find out for which omega we should have the least  value of



lambda or that will be the or that is what eigenvalue has least smallest spectral radius.

Then we will say that this is the optimum omega.

The converse is also true if mu is an eigenvalue of Jacobi iteration matrix Ps and a scalar

lambda is there which satisfies lambda plus 1 the omega minus 1 whole square is equal

to lambda omega square mu square.  Then lambda is  an eigenvalue  of SOR iteration

matrix is the proofs are complex we are not been discussing here.

Using the above relation we can find out the optimum successful relaxation factor omega

of 2 which is obtained as omega of this 2 by root over 1 minus 1 plus root over 1 minus

rho b whole square which is the this is the spectral radius of the Jacobi iteration matrix B

from the same problem.
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Now, what we will do we will do continue the numerical experiment with what we did

earlier with different value of omega for Gauss-Seidel. And what we can see is that the

case for which Jacobi will  20 into 20 matrix,  Jacobi needed 709 steps,  Gauss-Seidel

needed 374 step. For varying omega, omega 1.2, it is 258; omega 1.8 it is 133; omega 1.5

on it is 83 steps. From 374, it came down to 83 steps again omega started increasing

here. So, omega optimum should be in between 1.5 to 1.9 here. 



And what is happening in the spectral radius at 1.8. The cases we observed its giving

least spectral radius like for Jacobi the spectral radius was 0.98 Gauss-Siedel the spectral

radius is 0.97 omega 1.8 spectral radius is 0.8 and that is why convergence is faster.

We look into the larger matrix 40 into 40 matrix Gauss-Seidel is 0.99 322. And Jacobi is

0.99661 the number of iterations are 2400 or 1291. Omega 1.8 that spectral radius is 0.92

and the number of iteration is 1 6 2 is minimum. So, again if we look varying omega for

a 10 by 10 matrix is the least comes at omega 1.5 for 20 by 20 the least value comes at

omega 83. Here at omega 1 omega 1.8 again. So, there is an optimum SOR factor for

which is number of iterations are least. And this we can calculate using the formula we

have given earlier. 
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That for 10 it is 1.51 where we will get the least spectral radius for 20, it is 1.7; for 40 it

is 1.84. And these are the values for which we get least spectral radius. After that the

spectral radius will increase as well as number of iterations will increase. However, we

can reduce the spectral radius significantly using successive over relaxation and that is

how we can increase reduce the number of iterations also substantially. 

So,  we try  to  cover  few important  basic  iterative  methods.  We will  look into  more

complex  iterative  methods  which  gives  faster  solution.  And  also  see  in  the  iterative

methods which work for non diagonally dominant matrices in later classes. Also another

important  thing  which  we  will  look  is  how  to  write  computer  programs  using  this



iterative  methods  the  problems  actually  which  have  been  used  for  the  numerical

experiments in this purpose how to how can we reproduce these programs through these

methods. 

Thank you.


