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Welcome. In the last session, we try to look into the matrix representation of Jacobi or

Gauss-Seidel  method  or  any  basic  iterative  solver  method;  we classified  Jacobi  and

Gauss-Seidel  as  basic  iterative  solvers.  And from the  matrix  representation,  we also

found out the iteration matrix G. And observed that for certain property of G, there is

matrix norm of G must be less than 1. If we start with any guess value, the iteration

should converge to the exact solution of A x is equal to b, and that is because the error

between the guess value and the actual solution, which is maybe at k-th iteration level,

this is x k minus x x star, x star being the actual solution, this error will reduce in the next

iteration level, as it is multiplied them it by the iteration matrix G.

So, if this  multiplication reduces the length of the error vector, then after number of

iterations the reductions will be multiplied on each other, and then it will go to an infinite

small  value,.  And therefore,  this should converge to the exact solution. Now, there is

another issue, which we are discussing that, when the iterations converge to the exact

solution, we can see that there is practically no difference between the guess an updated

value, they also converge. So, we will also look in the convergence from the perspective

that the guess an updated value mean practically same, they are also converging, and

what are the requirements for them. 
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So,  we  start  with  assume  that  convergence  is  achieved  at  k  plus  1th  step.  The

convergence step then is x k plus 1 is equal to G x k plus f. Now, the step before that,

which is k-th iteration step, here it is not converge. Convergence means the difference

from the exact solution and the actual solution is of the of a very small number, and we

make a criteria for that, say this number is10 to the power minus 8. When the difference

is less than 10 to the power minus 8, it will tell that it has converged.

So,  let  us  assume that  this  convergence  has  been done in  k-th iterations  k  plus  1th

iteration step. And in k-th iteration step, though it is not converged, but the relation of the

guess and updated value is similar, x k is equal to G x k minus 1 plus f so on, we can

come down to first iteration step, which is x 1 is equal to G x 0 minus f. Using the above

relationships, we can write x k minus 1 is equal to G of x x k plus 1 minus k is equal to G

of x k minus 1. By using these two, we can write this x k plus 1 is equal to G of this.

Now, again using the next one x k, we can write that x k minus 1 is equal to G of x k

minus 2 sorry G of x k minus 2 plus f. 

So, if we subtract from these two, we will get x k minus x k minus 1. So, this minus this,

this minus this is minus x k minus 1 is equal to G of x k minus 1 minus x k minus 2. So,

the if now this we substitute by G f x k minus minus x k minus 2, we will get G square x

k minus minus x k minus 2 and so on, we will get G to the power k x 1 minus x 0, till we



come to this equation. So, the difference is also being multiplied by G to the power k,

reference from the guess and updated value. 
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So, we write x k plus 1 is equal to minus x k’s so on, it is G to the power k x 1 minus x 0.

And the first iteration step is x 1 is equal to G x 0 minus f. So, substituting x 1, so what

we  will  do,  we  will  substitute  x  1  into  the  relationship  a.  We can  write  that  this

combination G x k minus 1 x k etcetera, G to the power k I minus G x 0 plus f. 

Now, I minus G is a the initial requirement was that I minus G must be a non-singular

matrix, so if it is a non-singular matrix. For any x 0, which is multiplied by G to the

power k this should will be a very small number, if G also again has a matrix norm less

than 1. 
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So, we can say that for convergence, x k plus 1 and x k we have practically same value.

And therefore, that difference is infinite small, which will need that x k plus 1 minus x k

is less than epsilon, we got x k plus 1 is minus x k is G to the power k I minus G x 0 plus

f. x 0 can be assume that I minus G is a non-singular matrix, which is requirement for a

Gauss-Seidel  step.  x  0  is  a  is  an  arbitrarily  chosen vector,  so  x  0  can  be  anything.

Whatever be the value of x 0, this value has to be less than a very small number epsilon,

this value has to be less than a value has to be an infinite small value.

And that needs that the convergence of k plus 1-th step which is x k plus 1 minus x k will

be same convergence in that term, will happen only if the norm matrix norm of G k plus

1 goes to 0. Then this value if G k plus 1 is if this happens, then this value should also go

to 0 or should be less than epsilon. And this is again possible, if matrix norm of G is less

than 1. 

So, we can look into two steps things, one is that if modulus of if matrix norm of G is

less than 1, then the solutions will converge in a sense that the difference between two

guess an updated will be is essentially 0, very small number. The solution the iterations

will converge to a value. And, the converge value will be the exact solution. So, both

things are satisfied, if the matrix norm of G is less than 1. 
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So, A x is equal to b, we will look into convergence and accuracy of the iterative method.

A x is equal to b, we have the iterative step x k plus 1 is equal to G x k plus f. If matrix

norm of G is less than 1, then if sorry if matrix norm of this is not G k plus 1, if matrix

norm of the if G is less than 1, matrix norm of G to the power k plus 1 is basically

multiplying the matrix several times, this goes to 0.

And  once  this  happens,  the  equation  iterations  converge  for  some  k  for  which  the

difference between guess an updated value is very small. Also the converge solution x k

becomes practically same as the exact solution x star, because these two differences are

small. So, therefore, if the first thing happens, if the first thing happens, this will happen

for this particular criteria, and which for which this should also happen, or if the reverse

happens like the solution practically converges to the exact solution, we will see that the

iteration guess an updated value has also converge to the same value. 

So, if the iterations at all converge, if we come into a stage that the x x value is not being

updated guess an iterations are being same, then the iterations have converged to the

right solution. And that is the Robustness of this particular technique, Gauss-Seidel or

Jacobi or we will see successive over relaxation as a class of these methods. These class

of technique that if we can have converging solution converging iteration, the final result

must be same as the actual result. So, we can sum it up as, if the iterations converge, they

will converge to the exact solution.



Now, the questions come that under which case iterations will converge, of course we

know that by now that mod G matrix norm of G should be less than 1. And when matrix

norm of G will be less than 1, we have to look into the A matrix, because we are doing

very two steps to get G matrix from we are doing one type of splitting of A in Gauss

Jacobian, we are doing another type of splitting of A in Gauss-Seidel, but this is basically

splitting of the matrix A.

So, through splitting of the matrix A, we are getting the iteration matrix G. The iteration

matrix G has a norm less than 1, this is our requirement for convergence of Gauss-Seidel

Jacobi methods. And this requirement is satisfied based on what based on how is the A

matrix. So, you have to look into the A matrix, and see that in under which cases splitting

of A matrix gives us a G which has matrix norm less than 1.

Another thing we can also see that the value x k plus 1, if we go to the maybe we can go

to the previous slide and or here we can see also, that this value x k plus 1 minus x k is

something  is  this  is  like  this  value  x k plus  1 minus x k is  G to the  power  k  into

something. Similarly, x star minus x k is also G to the power k into something. So, all

this is some initial value multiplied with G to the power k. So, what is G, if G is a very

small number within very less number of steps, G to the power k will be a infinite small

number. 

If G has to be less than 1, but G G is close to 1, say for example G is 0.9, then it will take

large number of steps. Consider to the case, G is 0.1 matrix norm of G is 0.1, it will take

less number of steps. So, how first will be the convergence that will also depending on,

how is the G matrix. And how is the G matrix, that depends on how is the A matrix,

because G is coming through splitting of A. So, we will look into the properties of A

matrix for which these things will heard. 
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Matrix A is called weakly diagonally dominant matrix, we will look into few definition,

and  the  definitions  of  diagonal  domine  diagonally  dominant  matrices.  A  weakly

diagonally dominant matrix if the all the any diagonal term we considered any diagonal

term that is greater than the all of diagonal terms of that particular sum of all of diagonal

terms of that particular row in their absolute form greater than equal to, then we called

weakly diagonal. They may be greater than the sum of off diagonals, or may be is equal

to the sum of off diagonals.

We call it strictly diagonally dominant, if all the diagonal terms is greater than equal to

sum of  the  of  diagonal  terms  of  that  particular  row, except  the  diagonal  term of  all

diagonal terms. We call it to be irreducibly diagonally dominant, if for all j, it is weakly

diagonally dominant, but there is at least one row or at least one j for which the diagonal

dominance is there.

So, for all  j,  absolute value of the diagonal term is greater than equal to sum of the

absolute value of the off diagonal terms. But, there is at least one j for which at least one

row for which the diagonal term is absolute value of diagonal term is greater than this is

not greater than equal to, this should be greater than greater than the sum of off diagonal

terms.  So,  and  the  requirement  is  that  another  thing  is  that  irreducible  or  strictly

diagonally dominant matrices show non-zero pivots, at least in a permuted form, and

hence  non-singular;  not  in  permuted  from,  also  a  non-permuted  form  also.  Strictly



diagonal matrix are reduced severally matrix as show non-zero pivots. So, the permuted

form is not important here. 

And  therefore,  these  matrices  strictly  diagonally  dominant  or  irreducibly  diagonal

dominant  matrices  are  non-singular  also,  where  we discussing  this,  because  it  has  a

relation.  Remember  at  the  beginning  when  is  introducing  Gauss-Seidel,  I  was

introducing Jacobi, I said that this is only valid for diagonally dominant matrices. Now,

we will  see that only for diagonally dominance or irreducibility  diagonally dominant

matrix, the G will be such that that the matrix norm of G is less than 1, and that is why

these methods will be valid. 
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If A is strictly diagonally dominant or irreducibly diagonally dominant matrix, then the

associated Jacobi or Gauss-Seidel iterations converge for any x 0. This is the theorem for

convergence of iteration; when the Jacobi and Gauss-Seidel iterations converge, when G

has a matrix norm less than 1. What is G? G is the G is a split comes from splitting of A.

And this condition if we look into A comes as if A strictly diagonally dominant or an

irreducibly diagonally dominant matrix, then associated Jacobi or Gauss-Seidel converge

that means, G will have matrix norm less than 1. So, for which type of matrices, this will

converge, for example the first matrix 5 0 4, 1 3 2, 2 6 8 is A matrix. So, these are the A

matrices.



Now, if I look here, this is a diagonally dominant line, 5 is greater than sum of this. This

is weakly diagonally dominant 1 plus 2 is equal to 3, 2 plus 8 is equal to 6. However, this

becomes  an irreducibly  diagonal  dominance  is  there  irreducibly  diagonally  dominant

matrix. And this is the diagonally dominant matrix. So, for these two, this A x is equal to

b can be solvable using Jacobi or Gauss-Seidel.

If in case, this would have been 4 in case instead of 5, this is 4, we could not have been

able  to  solve  this  equation,  because  then  it  would  have  been  a  weakly  diagonally

dominant.  So, for weakly diagonally dominant matrix,  Gauss-Seidel or Jacobi cannot

work. You can try, you will discuss about writing our own program, but you can try also

this by hand, even paper, pencil, you can try few steps, and see what is happening to this.

You will see that the values are not converging x k plus 1 minus x k, if it  is weakly

diagonally dominant x k plus 1 minus x k, it is not reducing, it is increasing or remaining

constant at a I value.

If it is not a diagonally dominant matrix like if we look into the first row 2 plus 4 is equal

to 6, which is 5 plus 4 is equal to 9, which is greater than 2, then it cannot be solved.

Also if we think of doing a row permutation of this matrix, like I will permute these

rows, I will again permute this and this, if we think of a row permuted form of this

matrix, is it does not remain a diagonally dominant matrix.

However, the solutions will remain same, because row permuted form and the actual

form should give us same solution.  But, if we do row permutation,  the matrix losses

diagonal dominance and we cannot solve it using Jacobi or Gauss-Seidel. Though row

permutations  remain  the  solutions  in  solutions  exist,  and  solutions  are  same  with  a

diagonally  dominant  matrix  or  irreducibly  diagonally  dominant  matrix,  and  the  row

permutated matrix form of that matrix solutions are same. However, the row promoted

from, as it does not remain diagonally dominant, cannot be solved using Jacobi or Gauss-

Seidel method. Why, because of the fact that G has been changed.

So, in case, we get a matrix which is solvable, but does it is not in a diagonal dominant

form, we can try row permutations, and give it to a diagonal dominance form. And only

in the diagonal dominant form, the matrix can be solved. This cannot be solved using a

Jacobi  or  Gauss-Seidel  method,  because  this  is  though  it  these  two  matrices  are



permutated form of each other. However, 2 plus 2 is equal to 5, which is greater than 1,

so this is not a diagonally dominant form, so it cannot be something (Refer Time: 18:55).
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Here comes another important definition is that the maximum modulus of eigenvalues of

A is called spectral radius of A or row A. And this is given as any for any matrix norm,

we can take 1, 2, 3 up to p or infinite matrix norm. Matrix norm of matrix A to the power

k to the power 1 by k and as limit, k goes to infinity, this is row of A. So, maximum and

this is same as the maximum modulus of eigenvalues of A spectral radius.

So, any matrix raised to a high power, and then we take matrix norm, and then take say

that root of that matrix 2 to the power, it was raised with the limit is the spectral radius or

the largest eigenvalue of A. This is a definition. 
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So, let A is equal to M minus N. M, N pair is called regular splitting, if M is non-singular

and M inverse and N are non-negative.  Then A is  equal  to  M N is  called  a  regular

splitting of matrix A. A non-negative matrix means all elements of that matrix are non-

negative. Let M and N be a regular splitting of matrix A. Then row M inverse N is less

than 1, if A is non-singular and A inverse is non-negative. So, if M and N are regular

splitting of A, then rho inverse N is rho rho of M inverse N less than a 1 is non-singular,

if A is non-singular and A inverse is non-negative.

And the iteration step in that case, the iteration step x k plus 1 is equal to M inverse N x

k plus M inverse b will converge to rho of M in converge, if this rho M inverse N (Refer

Time: 21:08). This is basically the G matrix right this is basically the G matrix. This will

converge, if the matrix norm of G G to the power k is very small or matrix norm of G is

less than 1, which is spectral radius of G is less than 1. So, if spectral radius of G is less

than 1, x k plus 1 G x k plus f will converge. And this will happen, if M N leaner regular

splitting  of  matrix  A that  means,  M is  non-singular  and  M inverse  and  N are  non-

negative.

And now, there is there was a scientist named Greshgorin, who found out the theorem on

the  diagonal  dominance  of  a  matrix  and  its  eigenvalues.  And  as  a  corollary  of  the

theorem, we can say that this regular splitting with as above conditional spectral number

row I mean M inverse N is less than 1, can only be obtained for irreducibly or strictly



diagonally dominant  matrices.  This is comes from Greshgorin. So, if the matrix A is

strictly diagonally dominant or irreducibly diagonally dominant,  we can get a regular

splitting of M and N following our Jacobi or Gauss-Seidel method. And then, we will

also see rho of M inverse N, where M is M inverse is and N are non-negative, rho of M

inverse N is less than 1. A inverse will also be non-negative, and A is non-singular in that

case, if we have dominant or diagonally dominant matrix.

So, rho G is less than 1, and diagonally dominance, they are actually related. And this

relation comes through Greshgorin theorem. I I am not going into detail of Greshgorin

theorem here, but this discusses how should be the depending on the eigenvalues of the

matrix, how should be the diagonally dominant diagonal term and off diagonal term and

their arrangements. 

So, now we what we got is that if the matrix is non-singular, A inverse is non-negative, if

it can have a regular splitting, which is for a irreducibility diagonally dominant or strictly

diagonally dominant matrix. Then G should have convergent G should have a spectral

radius which is less than 1, therefore matrix norm of G must be less than 1, and matrix

norm of G to the power k must go to 0. 
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So, let G be a square matrix, such that rho of G is less than 1. Then I minus G is non-

singular and iteration G x k plus 1 is equal to G x x k plus 1 is equal to G x k plus f, this

iteration also converges for every f and x 0. And its converse is also true.



So, if G is a square matrix, so that rho of G is less than 1 obviously, I minus G will be

non-singular, and the iterations will converge, and that converge statement is also true.

And this happens, if and only if A is a diagonally dominant or irreducibility diagonally

dominant matrix. So, these say these are the cases in which we will have convergence of

the iterative methods. And this is very important Gauss-Seidel and Jacobi are very robust

methods,  but  only  for  the  matrices,  which  is  dominant  diagonally  dominant  or

irreducibly diagonally dominant. 

Now, you can see that the convergence depends on G rho of G has to be less than 1,

spectral radius we made things much simpler and much easier to quantify at this stage.

Instead of looking into the matrix norm of G, we can just consider the spectral radius of

G or the largest eigenvalue of G. If that is less than 1, then the equation system will

converge, and that should be done for any diagonally dominant or irreducibly diagonally

dominant matrix. 

Now, the question comes is that, how first will they converge, what will be the number of

steps, when we Rana Gauss-Seidel Jacobi program, how many iterations will it need. If it

needs a very large number of iterations, there is a much not much need of running the

iterative methods, because probably the direct solvers can give us faster solution, but if it

less takes less number of iterations, we can do it. 

So, how to see what is the rate of convergence or how fast do they converge, how many

steps needed for convergence of an iterative method. It is also important to see, which

will do in the later section also. That if we can improve the rate of convergence, if we

can do certain things, so that the convergence rate improves or if we can if we play with

the splitting of the matrix, so that we can get faster convergence. So, we before going

into this, we will try to define two more parameters regarding convergence.
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One is the convergence factor. Let the error at k-th step be d k, which is x k minus x star;

x star is x exact solution.  The difference between the Gauss Vector and the Solution

Vector is the error, we define it as d k. d k is G to the power k into d 0 initial error into G

to the power k, you have seen that earlier. 

The convergence factor which is defined by rho is given as rho is equal to limit k goes to

infinity. So, this rho is not spectral radius, rho of a matrix is the spectral radius, simple

rho is the convergence factor. There are two rows must not be convergence. Row limit k

goes to 0 d to d k d by d 0 1 1 by k to the power 1 by k. For faster convergence, the

convergence  factor  must  be  solved  must  be  small.  So,  how  should  we  determine

convergence factor, we after k-th iteration after a large k is a large number iteration, we

see what is the solution, what is the error, and the ratio between these two errors to the

power 1 by k is the convergence factor. 

If the factor is small that means, its the error is reducing in a first way, so convergence,

so we need less number of iteration steps or convergence factor. However, if we look into

the previous slide, this definition depends on the term d 0 right. We have to start with a d

0, and see what is happening. 



(Refer Slide Time: 28:09)

So, a better definition is given which in which, we do not need to a have we do not have

to need we do not need to depend on x 0, we call the general convergence factor. And it

is defined as independent of initial guess phi general convergence factor is limit k goes to

0, maximum of x 0, which belongs to r to the power n d k by d 0 to the power 1 by k.

And this is maximum d k is G to the power k d 0 maximum of matrix norm of G to the

power k sorry vector norm, but these are ratio of vector norm G to the power k d 0 by d 0

1 by k. 

Now, by definition, this is the definition of say vector norm of any vector B is equal to

maximum of x 0 belongs to R matrix norm of any matrix B is maximum of x 0 belongs

to R B x 0 by x 0. So, this is the definition of matrix norm of G to the power k. So, we

get limit k goes to infinity, matrix norm of G to the power k to the power 1 by k, which is

nothing but spectral radius.

So,  if  we  try  to  see  maximum  of  the  convergence  factor  maximum  value  of  the

convergence  factor  for  any  guess  x  any  gauss  x  0,  we  will  see  that  is  the  general

convergence  factor, which is  spectral  radius.  So,  spectral  radius  now the smaller  the

convergence  factor,  faster  is  the  convergence.  Therefore,  smaller  the  spectral  radius,

faster should be the convergence. We need to have a matrix G, whose largest eigenvalue

is a small number; therefore we should get first convergence. 
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And there is another term called convergence rate. For faster convergence, convergence

rate must be high, so it is kind of has an inverse relation with this vector convergence

factor. If the convergence factor is small, then convergence is faster. If the convergence

rate it rate is high, convergence factor is faster. And convergence rate is defined as minus

log of rho tau is equal to minus log of the logarithmic of convergence factor, which is

minus logarithm of equivalent to general convergence factor and minus log of row G. 

Smaller the spectral radius of G, higher is the convergence rate, and therefore faster the

convergence had the convergence rate. So, less number of iterations will be needed. So,

we need to see that and that will give an idea, that how we can increase the improve the

convergence criteria through splitting, which one will give us faster convergence Jacobi

Gauss-Seidel or some gradient of it, for which, we get smaller spectral radius of G.

If that spectral radius of G is equal to 1, there is no convergence it is skilled right, I

minus G is singular, it cannot converge. If spectral radius of G is less than 1, that will this

will  converge and as small  as it will  be in spectral  radius this is the modulus of the

eigenvalues, so this cannot be negative. So, as small as it be as it is a in between 0 to 1;

as small as it be faster will be the convergence. 

So, by in next class, we will look into some matrices and look into the spectral radius of

this  of  the  G  associated  G  matrix.  And  see  for  Jacobian  Gauss-Seidel,  how  is  the

convergence rate. And we will also see if we can do something with the matrix or we can



design a better matrix solver, which we will have less condition smaller spectral radius,

so that the matrix the solver convergence in a faster way than Jacobi and Gauss-Seidel.

We will look into this in the next class. 

Thank you.


