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Welcome, in this session we will continue our discussion with few of the fundamental

aspects of matrix algebra. At least we will get the definitions clear so, that when they will

appear  in  the  later  part  of  this  course  especially  when  we  will  deal  with  iterative

methods, we feel our self more conversant with these terms. So, we will discuss about

the  few  more  aspects  which  are  positive  definiteness,  singular  value  and  condition

number.
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So, let us consider a function which is a function of x and y and it is a general quadratic

function of x and y; f x, y is equal to ax square plus bxy plus cy square does not have any

other constant in this function. So, it is entirely varies with x and y and we try to find out

what is the minima of this function. Why the minima is important? Because positive if

we  say  that  this  function  is  positive  definite  name,  then  we  say  that  definitely  this

function is positive; that means it will always have a positive value.

Now, if we look into this function f x, y is equal to ax square plus bxy plus cy square at

x, x, y is equal to 0, 0 f of x, y is equal to 0. So, the minimal value is not positive, it we



can get at least one location where f x, y is 0. So, this function can be a positive definite

function;  that means it  can only have positive values; definite does not have definite

positive values. In a case where this f x, y at x is equal to 0 y is equal to 0 x is equal to 0

y is equal to 0 is a minima.

Then this is the minimal value of this function; that means, every other value of this

function is  a positive value.  So,  the function except  x is  equal to  0,  y is  equal  to 0

everywhere has a positive value. Positive definiteness will mean that the function will

always have a positive value or it should have a minima at x is equal to 0, y is equal to 0.
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So, this can be a function like this; concave function where the minima is that x is equal

to 0, at y is equal to 0. And how do I ensure that the minima is at x is equal to 0 and y is

equal to 0? We will take the gradients will consider the gradients. So, you can see that at

x is equal to 0 y is equal to 0, then radiants are already 0; del f del x is equal to 0 del f del

y  is  equal  to  0  because  there  is  a  quadratic  function  of  x  and y  without  any  other

constants clear.

So, these things say that there can be three cases and we know that if first derivative is 0,

it can be a minima, it can be a maxima or it can be a an inflection point. So, what are the

tests that it should be a minima? The test is that that the second derivatives should be

greater than 0 and not for like with respect to x and y and not for being an inflection



point d 2 f dx square into d 2 f dy del 2 f del x square into del 2 f del y square should be

greater than equal to del 2 f del x del y.

Now, if we impose this conditions on the function, this function will get that the first two

will give me a is equal to 0’s; a is greater than 0 and c is greater than 0 and the third one

will give us ac is greater than b square. So, if these conditions hold, then will say that x f

x, y is a positive definite function; that means, it will definitely have positive value will

know where it will have a negative value.
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So, we can say in R 2 function f x, y is x square plus bxy plus cy square it is positive

definite; that means, it only has a positive value except x is equal to 0, y is equal to 0;

that  is  the  only  location  where it  has  a  negative  value.  So,  if  we can represent  this

function as x transpose AX where x y is the x vector. So, this is X transpose this is A and

this is X.

Now, positive definite means it has a 0 value at the a at x is equal to 0, y is equal to 0

which is the minima of this function. So, if x is a non-zero vector, nowhere it has a 0

value everywhere it is a it is a positive function is definitely a positive function. And in

that case we write that positive definiteness means X transpose AX is equal is greater

than 0 for all X which is a non-zero vector.



And in a higher dimensional space this can be instead of x be x in R 2 and a being a 2 by

2 matrix, this can be a multi dimensional matrix X belongs to or we can write this with

the vector X belongs to R n and A is A n into n matrix. So, this X transpose AX will give

us a ij x i x j and it will also be a positive definite matrix, if X transpose AX for any non

zero vector AX X transpose AX is greater than 0.

So, the idea is similar that we have a matrix a which is multiplied pre multiplied by

transpose of a non zero vector and post multiplied by the non-zero vector and the product

which is a quadratic function of different x and y or the quadratic function of different

components of the vector of vector x. This product is always greater than 0, that x is a

non zero vector if x is a 0 vector, it is 0, but f x is a non zero vector; this product is

always greater than 0 or definitely this product is positive. Then the matrix A is also said

to be a positive definite matrix. In that case we write that A is positive.

Now, earlier we have seen that there are few conditions based on which like when we

took the function ax square bx y plus c x square plus bxy plus c square cy square. There

are few conditions based on which we can say that x is equal to 0 x is equal to 0 is a

minima and therefore,  it  is a positive definite function x x squared plus bxy plus cy

square will have a non zero value for any other values of xy except the 0 0. And these

conditions are a is greater than 0, c is greater than 0 and we got ac is ac is greater than b

square.

So, that means, the matrix a should pose a certain properties based on which, this will be

decided that x transpose ax is greater than 0 for any x except x is equal to 0. And if we

look into this properties that there will be few tests on the matrix A and will see how

certain parameters for example, eigenvalue or the determinant or the pivots of the matrix

appear. So, that we can say that X transpose AX is a is positive definite functional and A

is a positive definite matrix.
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So, there are few tests. Each of the following tests is a necessary condition for a real

symmetric matrix to be positive definite. So, each of this has to be satisfied X transpose

AX is  greater  than  0 for  all  non zero  real  vectors  X.  All  the eigenvectors  x  all  the

eigenvalues  of  A,  must  satisfy  these  are  not  necessary  all  these  are  necessary  and

sufficient conditions. So, if at least one of this condition is satisfied, the rest are also

satisfied and A is a positive definite matrix; that means, X transpose AX is greater than 0

for all non-zero real vectors x that is from the first condition which is same which will be

also satisfied if eigenvalues of a satisfy that all the eigenvalues are greater than 0. There

is no non-zero, no 0 eigenvalue, A is not a singular matrix and also there is no negative

eigenvalue of A.

All the upper left sub matrices of a for example, if we have a large matrix A all the upper

left sub matrix, this matrix or maybe this matrix. All the upper left sub matrix of A, if we

take this diagonal any matrix above this will have a positive determinant. All the pivots

without doing row exchange must satisfy d k is greater than 0. So, all the pivots should

be positive pivots.

Fifth is that that it is for a real symmetric matrix A. It is positive definite if and only if

there exists a matrix R which as independent columns. So, that R transpose R is equal to

A. So,  R is  also square matrix  there can be a  square matrix  which has independent

columns. So, that A can be classified as A can be decomposed as R transpose R in and

that is for a symmetric matrix with real values; then A is a positive definite matrix.



So, if any of these properties hold A must be a positive definite matrix. The last one is

only for symmetric matrix. Symmetric positive definiteness has certain very interesting

properties and few applications of matrix solvers are specifically for symmetric positive

definite matrices. We will discuss it later.
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There  is  another  term called  positive  semi-definite  matrix  and positive  semi-definite

means this is more negative, X transpose AX X transpose AX is greater than equal to 0

for all x which is non not equal to 0.

So, it can be X transpose AX is possible to have X transpose AX 0 also, but it is it is not

up what I will say that it is not necessary that X transpose AX is always positive it can be

0 also, but it is never negative. And for real symmetric matrices, there are few tests for

positive semi-definite matrix. Second we came to the paradigm of symmetric matrices.
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That X transpose AX is greater than equal to 0 for all real vectors X. All the eigenvalues

satisfy that the eigenvalues are non-negative; it is either greater than 0 or is equal to 0.

So, A can be a singular matrix also. No principal sub matrix has negative determinant,

the none of the pivots are negative. There can be 0 pivot the pivot, but none of them are

negative. So, it can be a singular matrix that is why there can be 0 pivot also. And there

possibly exist a matrix R there exists a matrix R, we possibly have dependent columns.

So, that we can decompose A as R transpose R and so, few of these things of similarity

with positive definite matrices; only thing that positive semi definite matrix a can be a

singular  matrix  too,  but  positive  definite  matrix  has  no  eigenvalue  which  is  0;  all

eigenvalues are greater than 0. So, it is definitely a non singular matrix.
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So, you go to the next set of the next property which you are interested in or this is this is

not a property these decomposition of matrix is one particular operation on a matrix. And

for if we can remember that for square matrices, we obtained that A is equal to; we can

decompose  any  matrix  A is  equal  to  vector  X  transpose  lambda  X,  where  X  is  a

orthogonal  matrix  X is  or X is  the matrix  combining the eigenvalues,  lambda is  the

eigenvectors, lambda is the eigenvalue matrix.

In case of a rectangular matrix, a similar decomposition is possible which is given as A is

equal to U sigma V transpose. Instead of X transpose A and X where using 2 different

matrices U and V transpose and instead of the lambda or the eigenvalue matrix. We are

also using another different matrix sigma, where U is an m into m matrix whose columns

are the eigenvectors.  Now, they are not eigenvectors of A because A is a rectangular

matrix. We cannot have eigenvalue and Eigen vector of a, but we can get eigenvector of

A transpose.  A is  a  U is  a  m into m matrixes  columns are the eigenvectors  of U u

transpose U is and then U is also an orthogonal matrix, why because A transpose is a

symmetric matrix. Therefore, it is eigenvectors must be orthogonal to each other.

Similarly, V is an n into n matrix whose columns are the eigenvectors of A transpose A,

V is also symmetric matrix. So, the V sorry A transpose A is also symmetric matrix. So,

eigenvectors are orthogonal to each other therefore, V is also an orthogonal matrix. And

sigma is an m into n matrix whose first R diagonals are the square roots of non-zero

eigenvectors  of  both  A  transpose  and  A  transpose  A.  Depending  on  how  many

indepe[ndent], what is the rank of a or how many independent columns or rows do a



have, we can get non-zero eigenvalues of A transpose and A transpose A and they will

come in the matrix sigma.

So, sigma will look like a square matrix say, will have lambda 1, 0 0 0 0 lambda 2 0 0

may be 0 0 lambda 3 lambda 3 0 if sigma is 3 into 4 matrix. So, depending on and this

three  are  the independent  rows number  of  independent  rows and columns of  A.  So,

depending on that  sigma, we will  have non-zero non-zero eigenvalues;  non non-zero

diagonal terms. For example, if I have something like a 4 into 2 sigma a is 4 into 2 sigma

will also be 4 into 2. So, this will be lambda 1 0 0 lambda 0 sorry 0 lambda 2 0 0 0 0.

Only these 2 diagonals will have these 2 rows will have non-zero diagonal terms.
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And these R diagonal elements which are the square roots of non-zero eigenvalues of A

transpose and A transpose A. So, rather we should write that sigma will have the form of

root over of lambda 1 0 0 0 0 root over of lambda 2 0 0 may be 0 0 0 0 0. And lambda 1

and lambda 2 are Eigen values of A transpose or A transpose A.

So, A transpose and A transpose they essentially have same eigenvalues, same non-zero

eigenvalues because one of them will have a larger dimension; however, the there will be

0 eigenvalues corresponding to that dimension nevertheless. So, we can get the first R

diagonal elements which has square roots of the non-zero eigenvalues of A transpose and

A transpose A and these are called the singular values of A. The non-zero I have to find

out the non-zero eigenvalues of A transpose or A transpose a given A is a rectangular



matrix and square root of the non-zero eigenvalues will be called as the singular values

of A.

And when we can decompose the matrix A as U sigma V transpose where sigma is the

matrix comprising the singular values of a which are the square root of A transpose and A

transpose A. This is called singular value decomposition. And interestingly if we can take

a square matrix A, we will see that this is very similar to a X sigma X transpose type of

decomposition of A. Where the matrix sigma will now compose the eigenvalues of A, if

a is a square matrix. It is defined for a general matrix which is a rectangular matrix and

we get singular values which are square root of the eigenvalues of A transpose and A

transpose A.
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So, there are few remarks for a real positive definite matrix A. Positive definite means it

is a non-singular matrix and it does not have a negative eigenvalue also. A is equal to U

sigma V transpose is identical to A is equal to Q lambda Q transpose where we can write

lambda, we have seen this form earlier lambda is the eigenvalue matrix. It is a diagonal

matrix whose diagonal elements are the eigenvalues only and Q is an orthogonal matrix

formed  by Eigen  vectors.  Q is  an  orthogonal  matrix  is  formed  by eigenvectors  that

depends on, if the if A is symmetric; then Q is formed by eigenvectors.

If U and V give orthonormal basis of all fundamental subspaces of A; so, you have seen

that sigma has R eigenvalues are non-zero Eigen increase non-zero entries in sigma that



would A transpose and A transpose A will have eigenvalues non-zero eigenvalues which

is exactly same as the dimension of the matrix as a rank of the matrix A. Therefore, U

and V will have same number of because U and V are the Eigen vector matrices will

have same number of independent eigenvectors.

So, similar that will be determined first r columns of U will give the column space of A

which is the number of independent columns which will number of independent columns

of A is basically r. So, first for r columns of A, we will give the will be the basis of

column space of A and m minus r columns will be; obviously, U is a m into m matrix m

minus r columns will; obviously, give the complement orthogonal complementary space

of A which is the left null space of A.

Similarly, first r columns of V will give the dimension of basis for row space of A and

last n minus r columns which will be the complementary part, which is null space of A.

So, if we can do a singular value decomposition not only we get the singular values

which are eigenvalues of A transpose, but we can also get the fundamental  basis for

orthonormal  basis  for  fundamental  subspaces of  A. So,  there orthonormal  basis;  that

means, there independent spanning vectors as well as each vector has an unit length and

each vector is perpendicular to the to the rest of the basis vectors. We do not need to do a

gram smith type of operation to get an orthogonal set and they already orthogonal set.

And matrix A and this is a very interesting property matrix A multiplies a column of

column v j of V to sigma j times of a column of U. Sigma j is what is sigma j? Sigma j is

the eigenvalue square root of eigenvalue of A transpose or the singular value of A. So, A

multiplied with V will give U multiplied by the singular value matrix as any matrix. So,

AV is equal to U sigma.

So, we will go to another third concept which I am supposed to discuss to the condition

number and we have discussed singular value mostly in 2 purposes. The main purpose is

that  that  when we look into  condition  number  which  is  lot  of  importance  in  matrix

solvers that condition numbers can be estimated using singular values. We will not do the

detailed algebraic proof for that, but we will show the formula will show at the end, how

to  express  condition  number  using  the  singular  values.  This  is  the  main  purpose;

however,  there  is  another  purpose  which  is  that  any  rectangular  matrix  can  also  be

decomposed into 3 matrices; 2 matrices with orthogonal column vectors and the third



matrix  which  is  a  kind  of  a  diagonal  matrix  with  few  non  non-zero  diagonals  and

remaining terms are diagonal in this matrix.

And this, by this decomposition, we can get the basis for the fundamental subspaces of a

column  space,  row  space.  Space  left  null  space,  bases  for  all  these  spaces  can  be

obtained. And also AV is equal to U sigma, this relation says that I can transform one

space to I can transform column space to row space or vice versa using this particular

decomposition and the matrix.  This is  in linear  algebra singular value decomposition

pose a interest and lot of lot of theorems and applications of linear algebra depends on

singular value decomposition. However, we try to cover it very briefly so, that we are

conversant with the definitions that that is the main purpose of this discussion here.
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So, we will go to the third topic which is condition number. For a non-singular matrix

condition number is defined as the matrix norm of the condition number of matrix A

matrix norm of the matrix A into it is dot product or its mean to the norm of the inverse

of the matrix. It is not simply multiplication matrix because norm is a scalar quantity. So,

multiplication between 2 scalars one is the matrix norm of the matrix A, another is the

matrix norm of the in inverse of A.

A matrix norm we have looked into vector norms. A matrix norm is defined as a vector

norm of as defined using a vector norm as matrix norm of A is the ratio of the vector

norm of Ax, x being any non-zero vector divided by the norm of the vector norm of the



vector x and maximum of that. So, we take any non-zero vector x and multiply with A

and the ratio of the norms vector norm Ax by x and find out which one is a maximum of

that and we call that as a matrix norm of A. This in a sense can be thought if we have a

vector x, how much to which extent like if I have a vector x and when we multiply a

vector with a matrix this is again another vector.

So, what is the norm of the product vector divided by the norm of the original vector or

how much the vector is being stretched when it is multiplied with that matrix? So, it is

kind  of  a  measurement  of  the  stretching  which  is  accomplished  by  multiplying  any

vector with the matrix. And what is the maximum amount of stretching when we do

multiplication of the matrix? This is that is defined as the matrix norm.

A matrix  may have one first  norm, second norm P-norm, infinity  norm same as  the

vector norm of the vector. So, what definition are we using on the vector norm that will

define that what definition are we will be using for the matrix. Now, if we use l 1 norm

for the vector, it is the first norm of the matrix. If we use l 2 norm of the vector is the

second norm of for the matrix. If we use l infinity norm that is the largest component of

the vector will use the infinite norm for the matrix.

So, it is it will go hand in hand. Condition number of A matrix measures the ratio of

maximum relative stretching which is norm of A to minimum relative shrinking that the

matrix does to any non-zero vector. Such as a matrix norm of A into matrix norm of A

inverse is maximum of Ax by x which is maximum stretching of the vector x by this

matrix into minimum of Ax by x inverse 1 by minima Ax by x that is the minimum

stretching possible relative shrinking using that particular matrix.

A singular matrix will have infinite condition number why because A inverse singular

matrix means the in inverses A has A there is some 0 in A. So, multiplying A vector by a

singular matrix will probably result in 0 stretching of that matrix and A inverse will be 1

by 0. And therefore, the matrix will have infinite condition number.

So, interestingly we can say, if A is singular, Ax is equal to b is not solvable. So, if A

matrix is infinite condition number, Ax is equal to b is not solvable. A matrix which has

very high condition number, it  will be difficult  to solve that matrix using any matrix

solver. Low condition number or condition number close to 1 are designed by the matrix

solvers. If the condition number is high, we call them to be ill conditioned matrix and we



will we can quickly show it later also as a matter of fact any matrix solver will probably

not work well with that with low high condition number matrices.
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If we use l 2 norm for the vectors or if you use 2- norm for matrices, if discussed in detail

about the norm of A vector. So, if we use l 2-norm that is norm of A vector is square root

of the square of all  the components of vector. It can be shown that for an invertible

matrix, the condition number is same as the ratio sigma max by sigma min or the ratio of

the maximum singular value by minimum singular value.

So, that there is one being importance of doing singular value decomposition. If we find

maximum singular value and minimum singular value for any matrix A, it is ratio is a

good measure of condition number and it is actually the second norm of the if you use

second norm for the matrices. It is the condition number which comes to the definition.
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A normal matrix  is  defined as a square matrix A is  called a normal matrix  if  UA U

inverse is a diagonal matrix for any unitary matrix u. So, will trying to define A matrix;

normal  matrix  which  needs  definition  of  another  type  of  matrix  which is  an  unitary

matrix. And U is an unitary; U is a unitary matrix U is a unitary matrix. If it is a square

matrix with U Hermitian is equal to U inverse. For real square matrix U transpose is

equal to U inverse or U is an orthogonal Q matrix, then U is called an unitary matrix. So,

unitary matrix is a complex equivalent of a orthogonal matrix.

So, if A is x, A if U AU inverse is a diagonal matrix or for real matrix Q A Q inverse Q A

Q transpose is the diagonal matrix, then A is called A normal matrix. A is a And if A is a

normal matrix if Q A Q transpose is the diagonal matrix A must be a symmetric matrix or

if A is a normal matrix A Hermitian is equal to A Hermitian A for real matrix A transpose

is equal to A transpose A, then A is a normal matrix.

And if it is so, then the condition number is same as the spectral condition number or the

ratio of the maximum eigenvalue and minimum eigenvalue of A. And will very quickly

check that what are the importance of having condition number or having high spectral

condition number or low spectral condition number of a matrix or high condition number

or low conditional number.
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If  a  matrix  has  large  condition  number,  the  solution  may  be  unstable  due  to  small

perturbation or round off error. For example, if I am solving some equation Ax is equal to

b and A has something like root 3 x 1 which is ith row plus 5 x 2 is equal to 3.4. Now this

root 3 or even 3.4 when we use computer to define it, it never defines the value which is

exactly same as root. We discussed it earlier like root 3 is a rational number. So, it will

have infinite decimals going on to define exact value of root 3.

However when you use a computer, it truncates it after certain values. So, what we write

into as what computer write says, root 2 and what root 3 is very small difference between

them. Therefore, if I look into the ith equation when I write it in a computer program, it

is not the exact right equation. There are some small values taken out of some of the

coefficient or some small values added to some of these coefficients and we call that this

is  a  per  perturbed  equation.  The  equation  is  not  the  exact  equation,  there  is  small

perturbation on the equation.

Now, keeping this in mind that we are never solving the exact equation which are writing

in pen paper. Whenever translating it into a computer program, whatever be the precision

of the computer, whatever be the accuracy of the computer program; there will be small

perturbations. Because due to round off error because root 3 will be replaced by some

well which is closed very close to root 3, but not exactly root 3; 1 by 3 will be replaced

by some value which is 0.3333333 and it will be cut somewhere it is not exactly 1 by 3

very close to 1 by 3 same for all real numbers except probably except integers.



So, the equations are little perturbed and not solving the exact equation. Now, if we think

of a matrix with very high consider condition number which is a is equal to 1.001111 and

we try to find out the eigenvalues. Eigenvalues are 2.005 and 0.00005. Therefore, it has a

large condition number condition number to the order of 2 into 10 to the power 4 into 10

to the power or something.

Now, if I look into the equation say Ax is equal to or A x, y is equal to say 2 2 and we

solve it we will get x is equal to 0 y is equal to 2. And if we have another equation A x y

is equal to 2.00012, we solve it we will get x is equal to 1, y is equal to 1. So, for very

small difference in one particular place, the equations are giving entirely different results.

And this and why they are giving entirely different result because it is a large condition

number  matrix.  So,  if  we  have  some  small  perturbation  instead  of  2.0001,  if  it  is

2.00005; we can see a very different solution. So, with very small changes in the matrix

or in the b vector, the equations change to a great extent and they are called an unstable

equation  system or the matrix  solver  operating on that  will  be unstable.  Though the

solution in pen paper can be obtained very easily, but the solutions are heavily perturbed

by the round off error and this happens for matrices with large condition numbers. And

we call them to be ill conditioned matrix that sense matrices with low condition numbers

are better to deal with.

So, condition number or finding out singular value and finding out the ratios of singular

value and finding condition number is an important task when looking for matrix solvers.

And later  we will  see lot  of,  we will  discuss  we about  few more  matrix  solvers  in

subsequent classes and we will see the lot of matrix solvers actually do not work for

matrices where the condition number is bad or works very inefficiently for very high in

condition  matrices  or  high  condition  number  matrices.  These  are  a  few  important

concepts; positive definiteness, condition number, singular values which will appear in

the next course, next classes with you at certain locations. And we have to utilize these

concepts to understand the applications in where the matrix solvers are involved.

Thank you.


