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Welcome, in last class we were looking into modified Gram Schmidt algorithm. The idea

of Gram Schmidt algorithm is to consider have a set of linearly independent vectors and

then form a mutually orthonormal set of vectors out of that. This is done in a way you

first the, first vector you consider the vector itself and then divide it by it is length and

get a normal vector or reunite vector on the direction. For the second vector onwards you

take a vector project that vector along the already settled orthogonal vectors.

And  subtract  these  components  from  that  particular  vector.  And  whatever  will  be

remaining with you is perpendicular to the already settled set of orthonormal vectors.

And this vector take this vector, divide it by it is length you will get another unit vector

now you get a set of orthonormal vectors up to this vector and move it for move forward.

So, what we have seen is that, as we take one particular vector v 1 for example, we take

one particular vector v 1 v, i and we have a vector we have few orthogonal vectors q 1 q

2 q 1 q 2 q 3 so on. So, we project v i on q 1 and this is say projection of v i on q 1. This

is projection of v i on q 2. This is projection of v i on q 3. We subtract all this things from



v i and get a new vector which is u i and then q i in the next orthogonal vector is u i by

mod of u i.

However, when we subtract all this projections so, when we first take v i and sub subtract

it is projection from q i whatever will get will be v i minus projection of v i on q i. This is

perpendicular to or rather q 1. This is perpendicular to q 1 then we subtract from this

vector which is already perpendicular to q 1, we subtract projection of q i v i. This is

from this we again subtract projection of q 2 of u i on q 2. This will be perpendicular to q

2 this is also perpendicular to q 1.

However, if we have number of vectors and why this is both perpendicular to q 1 and q

2; because whatever is perpendicular  to q 1 has no component in q 1. So, from this

whatever you subtract will still  remain perpendicular to q 1; however, in a numerical

implementation  what  happens?  When  we  do  this  for  number  of  vectors  it  becomes

perpendicular to q 2, q 2, but does not remain perpendicular to q 1 due to round of errors.

So, the solution becomes that which is the modified Gram Schmidt algorithm that instead

of projecting v i every time and subtracting this projections from v i, what you do you

make this as u u 1 u i 1. Which is projection of v v i minus projection of v i on q 1.

Then the next step in modified Gram Schmidt method will be u i minus projection of u i

on  q  2.  This  2  steps  are  similar;  however,  exactly  same  arithmetically  we  can  see;

however, as this is done as we are not subtracting anything from this projection which is

v i  minus projection of v i  of q 1,  we are taking u i  and projecting u i  on q 2 and

subtracting this from u i the round of error we are making in this stage is again projected

on q 2 and being subtracted. So, round of errors are in a sense be getting cancelled. And

this always remains perpendicular to q 1 and q 2. And this is the idea of modified Gram

Schmidt method.

And we have a modified Gram Schmidt algorithm, where the dot product we take not

with the initial set of vector. Rather the initial vector we subtract it is from the initial

vector we subtract it is projection along one particular q. And then we take the modified

vector for the dot product. 
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And now if we see the an example that we are considering a set of linearly independent

vectors in r 4. And we are taking 3 vectors one epsilon 0 0 1 0 epsilon 0 1 0 0 epsilon.

Epsilon  is  a  small  number. And 1  plus  epsilon  square  epsilon  is  very  small  say  for

example; epsilon is 10 to the power minus 6. So, epsilon square is 10 to the power minus

12 is further small.

And we make the approximation 1 plus epsilon square is the 1. So, this approximation

actually mimics round off error because for epsilon is equal to say 10 to the power minus

6, 1 plus epsilon square, which is 10 one point 10 to the power minus 12 right. So, 0 0 0

0 0 0 0 0 0 0 0 1, this we are doing a round off error and we are considering this to be 1.

So, though we though this is not any computed implementation; however, we are solving

a problem in pen and paper, but we are doing a substitution of round off error here.

So, when in this case when we apply Gram Schmidt, classical Gram Schmidt technique

we get the following orthonormal set of vectors q 1 is one epsilon 0 0 (Refer Time:

06:58). This was again a length one that is that is the approximation doing here. It is

length is root over 1 plus epsilon square and we are considering it to be 1. 1 minus 0

minus 1 0, 0 minus 1 0 1 by root 2 by root 2.

These are orthogonal  set  of vectors.  And this  are  obtained after  doing the mimicked

round off error.
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Now, if we look into the modified Gram Schmidt orthogonal vectors, they are not same

as this. Because at certain step there is 1 epsilon square which appeared in Gram Schmidt

method which did not appear in modified Gram Schmidt method. So, you did not have to

neglect that epsilon square this thing this; however, if we write epsilon square in both the

if  we  have  not  disregarded  that  epsilon  square  which  is  coming  in  classical  Gram

Schmidt method, we would have got the same set of vectors in both the cases. But as

epsilon square is very small like a computer approximation we are doing 1 plus epsilon

square is equal to 1. 

This ideally should give right result and if we think of writing a computer program, we

have to deal up with deal with systems where this type of situations will occur, where

there will be numbers which are at which are not the exact number rather the numbers

which are replaced by a truncated version of this numbers, where the round off error is

already there, ok.

So, we see the modified Gram Schmidt solution. The first one is one epsilon 0 0, second

one is same 0 minus 1 1 0 by root 2. The third one is change 0 minus 1 minus 1 2 by root

6. The third vector in Gram Schmidt and modified Gram Schmidt are different. And that

is because of this approximation 1 plus epsilon square is equal to 1 is made somewhere

here which has not been made in modified Gram Schmidt at that particular location and

you cannot try it yourself we will see that this type is arising.



 This is the solution is actually very straight forward. So, these are the different value of

q 3 we are getting in Gram Schmidt and modified Gram Schmidt method.
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And now if we check orthogonality the classical Gram Schmidt q 2 transpose q 3 is not

giving me 0, rather giving me a half; however, the modified Gram Schmidt is giving me

the right result. Because this epsilon square approximation is avoided in modified Gram

Schmidt, which is not avoided in classical Gram Schmidt and once you do it practice this

problem yourself, you will be able to identify that particular step where this is been done.

So, modified Gram Schmidt obviously, gives us much stable solution. This error will

only come when we are when there is some epsilon square which is which neglecting

which can hinder the problem, ideally it should not be because these are small value, but

this is changing the solution. 

So, we call this to be a numerically unstable method, because it might give good result

classical  Gram Schmidt  might  give good result  in  certain  cases.  But  there  are  small

changes in the vectors and it can give entirely different result. And the results will be

wrong. In a sense that, vectors are not mutually perpendicular to each other; however,

modified Gram Schmidt is a stable algorithm and it should give you right result in all the

cases.



So now will  know that if  we have a set  of independent  vectors we can get a set  of

orthonormal vectors using those independent vectors how we can use it for the purpose

of matrix solvers? So, what we will do? We will consider a matrix with independent

columns. 

And what is the importance of having a matrix with independent columns? It can be very

easily  shown  you  can  take  it  like  a  small  exercise  yourself;  that  if  the  matrix  has

independent columns, and we solve Ax is equal to b, x will have at most one solution,

infinite solutions are not possible maximum there will be one solution if matrix a has

independent columns. If the columns are equal to the number of rows, then there will be

exactly one solution if the columns are less than the number of rows so that you have less

variables, but more equations. Columns are less than the less than number of rows.

However, if the columns are independent you will still get one solution. And that is why

in  case  of  singular  matrices  when  finding  the  particular  solution,  we  remove  the

dependent columns from that. So, that we have a independent we only have independent

columns in the equation.  So, what will  try to see is that we will  form a matrix with

independent columns and do a Gram Schmidt Gram Schmidt orthogonalization over that

matrix.

So,  the  matrix  will  be  transformed  to  a  q  matrix,  or  to  a  matrix  with  orthonormal

columns. If it is a square matrix it will be square q matrix which is called an orthogonal

matrix; however, So, you will get a matrix with orthonormal columns. Now solution is

very easy because in a with a orthonormal basis, we have earlier seen that we can take

the right hand side vector and project it on orthonormal basis. Projection with each of the

bases will give me each component of the solution vectors. So, solution will be much

simpler.

So, and there is a more formal way of proposing the solution here. So, what will do will

start  with  the  equation  Ax is  equal  to  b.  And  now take  a  and  do  a  Gram Schmidt

orthogonalization on a. And see how the equation looks like and what are the ease in

solving the equation.
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So, this is called a QR factorization start with a matrix a with independent columns v 1 v

j v k, and let us run Gram Schmidt orthogonalization steps on each of the vectors to get a

orthonormal set of vectors.

So,  I  have  sorry,  I  will  have  the  first  vector  v  1  it  is  very,  very  easily  it  can  be

orthonormalized, like will only take the length of that first vector and divide it by that

and we will get the vector q 1. And the relationship between v 1 and q 1 is q 1 is unit

vector. So, v 1 q 1 dot v 1 is basically length of v 1, a vector with unit vector dot product

if there are on the same direction it is the length of v 1 along q 1.

For v 2, v 2 is constituted sorry q 2 is rather q 2 is constituted as take v 2 project it along

q  1  subtract  that  part  for  it.  You  will  get  the  part  which  is  perpendicular  to  q  2

perpendicular to take v 2 project it on q 1 subtract that projection from v 2. So, we will

get a component which is perpendicular to v 2 and get q 2 out of it.  So, v 2 can be

decomposed in this 2 orthogonal vectors q 1 and q 2. Similarly, for q 3 how do we get q

3 we took v 3 project it on q 1 and q 2 subtracted this projections from v 3, what is

remaining with us v 3 minus the projections normalized it got q 3.

So, v 3 is again composite of 3 vectors. Or you can be decomposed into 3 orthogonal

directions q 1, q 2, q 3. Similarly, we move ahead v 4, there will be 4 vectors in which v

4 can be decomposed q 1, q 2, q 3, q 4. And v k kth vector will be decomposed in all k



independent orthonormal vectors. So, if a vector is like v 1 there is only one basis vector

which express v 1. 

For v 2 there is only 1 2 there are 2 basis vectors q 1 and q 2 which gives you v 2. For

any vector b on a orthonormal basis, q 1 to q n it can be expressed as q 1 transpose b q 1

which is projection of b alone q 1 allow on that direction. Projection of b along q 2 on

that direction, and similarly projection of b along q n and on that direction.

So, we can write v 1 is q 1 transpose v 1, q 1 v 2 is q 1, because it is only it has q 1 and q

2 components into q 2 and so on. So, we get a triangular form of equations here. The

equation set gives us a nice triangular form. Remember, v 1 v 2 to v k are columns of a

matrix A and we are thinking of solving Ax is equal to b. So, if we put this the right hand

side as the column of matrix A, if in case substitute it what happens then?
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So, v 1 v 2 up to v k and q 1

q 2 q 3 up to q k are column vector. The matrix A and Q this is column of this vectors are

sorry, this is columns of A and this is columns of Q, Q is the vector with orthonormal

columns. So, the matrices A and Q are related as this columns v 1 v 2 up to v n is equal

to the columns q 1 q 2 q 3. Because if I go back sorry, v 1 is q 1 transpose v q 1, v 2 is q

1 transpose v 2 q 1 plus q 2 transpose v 2 q 1.

So, the column v 2 is something into column q 1 plus something into column q 2. So, in

that sense if we go we can write that the matrix A, this is the matrix A, this is the matrix

Q multiplied by a triangular matrix. So, v 1 is q 1 into q 1 transpose v 1, v 2 is q 2. These



are the column vectors. This is not a single entry this is rather a column a vector. The

vector q 2 v 2 is equal to q 1 transpose v 2 into q 1 plus q 2 transpose v 2 into q 2 is

combination of these 2 columns so on.

So, we get a equation where we write a is equal to Q into R, where Q is an orthonormal

matrix and R is the triangular matrix. So, our R is rather direct to write a lower triangular

matrix lower triangular matrix. And we get if A is m into n; that means, A has m rows

and n columns. So, there are n independent  columns and each are in all  the column

vectors are members of vector space R m.

So, A is m into n Q is m into n and R is n into n. So, if we have n independent columns in

R m; that means, either columns are equal to rows or columns are less than number of

rows. So, A will have a shift like this A is m into n. M is greater than equal to n because

there are n independent columns. So, m can be at most m, this equal to Q sorry, Q is also

m in to n a rectangular matrix into r which is n into n which is a square matrix a small

square matrix.

So, this is a triangular lower triangular matrix and a triangular matrix must also be a

square matrix. So, A is a rectangular matrix that is obtained as another rectangular matrix

Q into square matrix square lower triangular matrix R. Now if I substitute this into the

equation Ax is equal to b. Because one idea is that if we have orthonormal columns, it is

easy to solve the equations. We have we have to like we have q x is equal to c you only

have to take c and project it along each columns q 1 q 2 q 3. So, c dot q 1 will give you

x1 c c dot q 2 will give you x 2 so on. So, solution becomes only a projection operation.

And now we saw that how from A is any general rectangular matrix, we have to convert

it into a transform A to A Q matrix. Then that is doable as a is equal to Q into R, where R

is the lower triangular square, square matrix R is a rectangular matrix. So, if we write Ax

is equal to b as QR x is equal to b. And see how to solve this equation. And we will also

see whether we can take advantage of that that q is orthonormal and so, finding solutions

are easy.
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So, Ax is equal to b on QR

factorization on that will give us QR x is equal to b. Which can be represented as a

system of 2 equation first is Qc is equal to b with Rx is equal to c. Now Q has so, there

are 2 things this Q is orthonormal and R is lower triangular. So, the first equation Qc is

equal to b can be solved as projecting b on Q. What is known to us? B is already known

to us from the matrix A we you learn a Gram Schmidt process and get the orthonormal

matrix Q. So, this can be obtained using a say modified Gram Schmidt algorithm Gram

Schmidt process on A.

So, take a take a matrix A and modified Gram Schmidt algorithm Gram Schmidt on A, A

you will get the Q matrix. And in this steps you can find out what is the R matrix. Now Q

is an orthonormal matrix. So, Qc is equal to b can be solved as just projecting c on q. So,

we can write c 1 is equal to q 1 transpose b c 2 is equal q 2 transpose b and so on. And

then we have the equation Rx is equal to c, which is the lower triangular system. So, you

can find out c from them, the last equation or if we look into R, sorry.

So, this is a lower triangular say matrix; that means the first equation so, r has a shift like

this. R 11 r12 r 21 r22 r 22 r31 r 32 r 33 and here we have x1 x 2 this is equal to c 1 c 2.

So, I can directly find out x1 is equal to c 1 by r 1, then x 2 is equal to c 2 minus x1 r 21

divided by r 22 and so on. So, the second equation Rx is equal to c can be directly solved

as R is a lower triangular matrix.



So, Ax is equal to b equation for any rectangular or for a square matrix also becomes

easily  solvable  or  other  than  Gauss  elimination  Gauss  Jordan  or  the  third  one  we

discussed about LU LU decomposition or TDM TDM is restricted only for tridiagonal

matrix,  but  general  purpose  we  have  seen  Gauss  Jordan  Gauss  elimination  and  l  u

decomposition. Other than this methods, we can also use the QR decomposition method

in which we can solve a equation system and the efforts are not that involved like Gauss

elimination  efforts  are  probably  simple,  simpler  that  Gauss  elimination  you  are  not

actually counting the number of steps, but this can be an exercise that count the number

of steps involved in a QR factorization.

However, if we have or in some way you already have the QR factorization of a matrix,

we can solve the equation very quickly. In a sense, Rx is equal to c is directly solvable. If

there are n questions in n steps. So, we can solve that in order of n steps. And then q x is

equal to Qc is equal to b is also solvable. We only have to project b along each of the q 1

and the solutions will be there.

But a n like LU decomposition the solution is simple when you have LU decomposition

already, but LU decomposition itself is a costly process. Similarly QR decomposition the

solution is simple, if we have already have the QR decomposed form. But solve getting

QR decomposition needs a Gram Schmidt process, which is relatively costly process, ok.
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.



So, the further important thing happens if we sorry, if we think of QR factorization of

normal equation. And normal equation is instead of Ax is equal to b is not solvable. The

columns are independent, but the columns are columns do not span the entire r n entire r

m rather columns do not span entire r m therefore, Ax is equal to b does not have any

solution.

So, x is equal to b is not soluble. So, what do you do then we try to find out the best

estimate of x we get the normal equation A transpose Ax x is the best estimate is equal to

b, QR estimate this not actually we use Ax tilde here. X tilde is best estimate of Ax is

equal to b with least square error. So, also from a least square method we can get this

system of equation. And we have A transpose Ax tilde is equal to A transpose b. So, for

the equation, this is not A b I am sorry this will be A transpose b A transpose b.

So, we have the equation A transpose Ax tilde is equal to A transpose b. And now you put

the  QR decomposition  here.  So,  which  is  QR transpose  QR x  tilde  is  equal  to  QR

transpose b. And transpose of a product is product of the transposes, in in the different

order. So, this is r transpose Q transpose QR x. And now what we know is Q transpose q

is an identity matrix. So, we get r transpose Rx tilde is equal to r transpose Q transpose b.

Cancel r transpose from both the sides. So, we have Rx tilde is equal to Q transpose b.

And we again end up with a lower triangular matrix, but now the solution now we do not

have to do any projection of 2 or we do not need to solve Qc is equal to b. We only have

one equation which is of lower triangular form Rx tilde is equal to Q transpose b. And

this equation is directly  solvable as R is lower triangular  form. So, QR factorization

actually is much useful if we have the normal equation. We will later see that many very

sophisticated solution techniques are not if that efficient for normal equation because this

A transpose a matrix is a complicated matrix to deal with one self.

However, if we have and QR decomposition, the A transpose a matrix we need not have

to deal with that rather we deal with Rx tilde is equal to Q transpose b. And very easily

we can solve this equation this is again n n steps. We can solve this equation because r is

a rectangular matrix system. So, this is one of the largest utility of QR decomposition

when you are trying to solve normal equation A transpose Ax tilde is equal to A transpose

b.



So, we with this lecture we finish most of the direct solvers we planned to discuss here.

And we go through the set of direct solvers which we which we have we have done

through  the  set  of  direct  solvers  here;  which  are  Gauss  elimination  then  LU

decomposition Gauss Jordan TDMA, or tridiagonal matrix algorithm we have seen it for

one specific purpose. When the matrix is tridiagonalized. And we have discussed about

variant of tridiagonal matrix algorithm which is not a direct solver which is actually an

iterative solver; however, that TDMA can be used when the matrix is not tridiagonal

rather penta diagonal or septa diagonal form.

And  we  have  and  now looked  into  another  matrix  solution  technique  which  is  QR

decomposition. So, next part of this course we will discuss with iterative solvers. But

before  going  into  iterative  solver  we  will  have  a  brief  review  of  Eigenvalues  and

eigenvectors  of  matrices  which  we  will  do  in  next  few  classes.  Because  they  are

important  in  iterative  solvers,  also  they  will  help  us  to  understand  the  behaviour  of

iterative solvers from the understanding we have already developed on Ax is equal to b

systems using direct solvers. So, next class we will start discussing on eigenvectors and

Eigenvalues.

Thank you.


