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Welcome, in the last few classes starting from the fundamental subspaces we observed

that the fundamental subspaces are mutually orthogonal to each other. And from there,

what  we to the case that  b vector  does  not  lie  in  column space.  So,  b vector  has  a

component  in  left  null  space also;  as  left  null  space and column space are mutually

orthogonal to each other. We projected b vector in 2 column space and the remaining part

we will say that; this is in a left null space. Using the projected part of the b vector into

the column space, we form the normal equation and we solve normal equation to get best

estimate.

The idea from this exercise we got is that a vector can be projected into a space and the

left out part will be the orthogonal part to the projection. So, if we have one particular

vector we can project this vector into another space and get the projection and subtract

the projection from the main vector and get another component which is perpendicular to

the projection.

So, we can constitute mutually orthogonal components of a vector or we can decompose

a vector into mutually orthogonal components. In this area, now we will explore more

that we will have a set of vectors which are mutually independent, but not orthogonal to

each other. And now, we will start projecting one vector to other and subtracting the

projection from it and then that, way we will create a set of mutually orthogonal vectors.

Or if essential we will create a set of orthogonal basis vectors for any vector subspace,

and this process we will start from a set of mutually independent vectors and which are

not necessarily orthogonal to each other. And end up with the set of mutually orthogonal

basis vectors and also these basis vectors; each of the basis vector will have a length

unity and this process is called a Gram Schmidt orthogonalization process. We will look

into the Gram Schmidt orthogonalization process, we will see; what are the advantages

and how this can be further applied for developing better matrix solvers, shift little bit

from matrix solvers. We will see how to orthogonalize the vectors given any set of basis



vectors and then we will again come back to matrix solvers; all this can be used in order

to solve ax is equal to b.

As well  as in order  to  solve the normal  equation a transpose a  x tilde is  equal  to  a

transpose b, when a x is equal to b does not have any solution.

(Refer Slide Time: 03:04)

So, we go to the first slide what is given here sorry that we have matrix equation. We

considered it is in a column combination form and this is in the vectors are in R 2. It is

real coordinate space of dimension to see it is easy to visualize it. So, these 2 columns

are 3 2 and 4 1 and they are combined to get a resultant vector which is minus 5 0. So, if

you look into the column space the basis vectors are 3 2 and 4 1 and this basis vectors are

inclined to each other.

(Refer Time: 03:43) Linear independent vector, but they are not than any combination of

this vectors can give me r (Refer Time: 03:48) vector in the column space. However,

these vectors are not perpendicular to each other. So, this is some point certain cases we

make this mistake that basis are always perpendicular to each other because, we deal

with basis  like xyz or e theta  e z  e r  something like that  in Cartesian or cylindrical

coordinate. However, basis vectors can be inclined to each other also we consider matrix

equation in R 2. That means, in real coordinate space R 2 or in 2-dimension space, the

vectors  are  member  of  the  real  coordinate  space  R  2  and  we  consider  the  column

combination form of this equation. So, this can be written as some constant multiplied



with 3 2 plus some constant multiplied with 4 1 is equal to minus 5 0. And we have to

find out what are these constant coefficients through solution of the matrix equation.

So,  if  I  look  into  the  vector  space  of  the  column  space  here,  the  column  space  is

constituted by the victors 3 2 and 4 one they are basis of the column space. Because, in R

2 we need only 2 vectors which are linearly independent to form the basis and this is

interesting to observe that this basis vectors are not mutually orthogonal, they inclined to

each other. Sometimes, when we think of basis of any real coordinate space we think of x

y or x y z or r theta. If you think of anything in polar coordinates which are perpendicular

basis. Vectors that is very easy to use perpendicular very helpful to use perpendicular

basis vectors in geometry, but and will see why is it is important in just in a moment.

However, basis vectors may also be inclined to each other. In general basis, vectors are

inclined to each other. There they are not at 90-degree angle in between them, but we our

exercise will be to form orthogonal basis vectors that the next thing.

So however, in this particular case when the basis vectors are inclined each other of the

column space if I try to solve this equation geometrically; that means, I take the first

column vector multiply it with the coefficient. And then add it with the second column

vector  multiplying  into  another  coefficient  and  see  what  are  the  coefficients.  So,

geometrically this is not trivial for 2 d event we can think of solving it like this will

extend this line and will extend this line. If we can extend in this line and then start

growing parallel of this and then we will see; we will do multiple parallel of this and.

Then, we will see that this parallel of this particular vector meets at this point and this is

minus 2 times into this particular column and time into this particular column. So, minus

2 and one is the solution.

For 2 d they can be visualized and it is it is difficult exercise if we think of doing it for 3

even for a 3 d case. You have to draw line and several parallelistic parallels in the plane it

is not trivial.  So, what we can say that when the equation has unique solution as the

columns are basis of R 2; however, it is not trivial to find the solutions using simple

geometry using simple geometry construction. Here, for 2 d we can find it if it is 3 d it is

difficult to find. However, if we have an equation where the columns are not inclined to

each other. The columns are perpendicular to each other, if we consider this equation

system 3 0 and 0 1 these columns are mutually orthogonal. The solution can be very

easily  found  out  simply  by  project  the  b  vector  into  1  column  the  columns  are



perpendicular to each other. Project the b vector into one column so this is 6 0 x will be 6

by 3 is equal to 2.

And the remaining part project it into another column this will be 0 2. So, y is equal to 2

by one is equal to 1 in this case. So, solution becomes extremely straight forward just by

projecting b vector on the columns. We can find out the solutions and dividing it getting

the length of the projection dividing it by the length of the column vector, you should be

able to find out the solution. So, if we have a matrix where the columns are orthogonal to

each other solving the matrix equation also becomes very simple just only. We have to

take each column project in and we have seen how to project a column into a vector onto

another vector to project the b vector onto that column. Find out the length divide by the

length of the column is the solution associated of the is a coefficient, associated with this

particular column and go on.

So,  this  is  one  advantage  where  will  can  for  which  we  should  speak  for  mutually

orthogonal columns.

(Refer Slide Time: 09:08)

Now, if you look into equations with mutually orthogonal columns. It is easy to solve

equation in Rn if a has mutually orthogonal columns. And we have seen that projecting b

vector  into each column and dividing by the length of the length of the column the

projected length. By the length of the column vector, will give us the solution it is also

important. So, it will be important if you can transform the basis of the column space to



mutually orthogonal basis. So, what will happen when we have some vector like that see

3 0 0 0 3 0 0 0 4 x y z is equal to 5 6 7.

So, I can see that x is equal to if I project this into 3 0 0 this will be 5 0 0. So, x is equal

to 5 by 3, y is equal to 6 by 3, z is equal to 4 by 7 by 4, something like that we can find

out instead, if we have a columns in a rotated form. So, these are not 3 0 0, but for

example, if I have column like 3 2 0 and then minus 3 2 0 minus 2 minus 2 3 0 minus 2 3

0 and 0 0 1. There this is not 3 0 0 they are not in diagonal form, but also here the

solution can be very well found in that way. You just multiply the project the vector onto

the b vector on to each of the column and find out the length and divide by.

There can be the thing and the idea of having mutually orthogonal column is that one

column  vector  transpose  dot  product  with  another  column  vector  transpose  of  one

column vector multiplied with another column vector v will be a 0 if the indices are not

equal. This will be there will be a further advantage if we can have orthonormal basis.

That means, the columns are perpendicular to each other and the length of each column

vector is one. So, when we are doing this division divide this. So, when we dividing the

divide the projected length by the length of the column if the columns are divide the

projected length by the length of the column.

(Refer Slide Time: 12:13)

 

If the columns are orthonormal then this length; length of each column is equal to 1. So,

if we only find out the projected length of b vector along each column that is the solution



that is a coefficient multiplied with each column. So, getting orthonormal column vectors

will be of further importance further use.

(Refer Slide Time: 12:46)

So, in R n vectors these vectors will be called orthogonal q 1 q 2 Q n. If Q I transpose q, j

is equal to 0 if j is not equal to I the vector q 1 q 2 Q n are called orthonormal; if their

orthogonal along with Q I transpose Q I; that means, length of each vector is equal to 1.

So, we can see some of the exercise examples like 4 0 0 0 minus 3 0 3 0 is an orthogonal

basis. However, length of the first vector is 4 second 2 or 3. So, they are not orthonormal

in one 0 0 0 1 0 0 0 1 0 this is an orthonormal basis this is ones 0.8 6 7 0 0 1 minus point

minus 0.5 0.8 6 7 0 7. They are orthogonal basis as well as they are orthonormal even

orthonormal basis each vector must have unit length, because each of this vectors are

unit length.

So, they form a orthonormal basis or orthonormal basis is orthogonal basis, but it  is

normal; that means, each vector has unit length and this is important in terms of solving

equations. We saw that that only the length of the projection we give a solution here.



(Refer Slide Time: 14:24)

A matrix with orthonormal columns is denoted as a Q matrix; Q is general form of a

matrix which is orthonormal columns. Now, there can be any number of columns it can

be a rectangular matrix; however, it is a square matrix a square matrix with orthonormal

column or Q matrix which is squared is called an orthogonal matrix remember, these are

terminologies it is not called orthonormal matrix it is called orthogonal matrix, because it

is conventionally it is being set.

So however, for an orthogonal matrix the columns are orthonormal. There can be some

example of orthogonal matrix in all these cases the columns are orthonormal. So, this is

basically,  we  can  write  a  square  Q  matrix;  Q  matrix  is  a  matrix  with  orthonormal

columns. If Q matrix is squared it is matrix it is called orthogonal matrix. An identity

matrix for example, 1 0 0 1 is an orthogonal matrix a permutation matrix like 1 0 0 0 0 0

1 0 0 0 0 1 0 1 0 0. This is also an orthogonal matrix of matrix a rotation matrix for

example, cos theta sin theta minus sin theta cos theta ok.

So, if I take that product among these 2 things it is cos theta sin theta minus sin theta cos

theta 0 and each column has cos square theta plus sin square theta length which is, 1 they

are orthogonal matrices.



(Refer Slide Time: 16:18)

Looking to some important properties of orthogonal matrix if Q is an orthogonal matrix

Q transpose Q is equal to 1. So, Q transpose Q is not 1 Q transpose Q sorry is equal to

identity matrix identity matrix.

So, these are each rows of the Q transpose which is orthogonal row of the orthonormal

matrix  column  of  orthonormal  matrix,  multiplied  with  the  columns  of  orthonormal

matrix. So, this becomes first column of orthonormal matrix and it is transpose with the

first column of the orthonormal orthogonal matrix and this is one and for any other value

of q 1 and 2 q 1 transpose Q two this will be 0. So, it becomes 1 0 0 0 1 0 0 0 1 so it

becomes an Q transpose Q becomes an identity matrix and if Q is orthogonal that is

square.

So, this is for any Q matrix not necessarily has to be a square matrix; however, if Q is

square we can say Q inverse is equal to Q transpose why because, for Q. As we have

seen Q transpose Q is equal to I for square matrix square Q Q inverse Q is also identity

matrix. So, it gives us that Q inverse is equal to Q. So, for an orthogonal matrix it is

transpose is it is inverse so if we have an orthogonal matrix multiplied with a vector. And

we have to find out the solution Q x is equal to b it is x is equal to Q inverse. B is x is

equal to Q transpose b or it is trivial to find out the solution.



In this case, in we just make transpose of Q matrix take it into right hand side multiply

with the b vector and that will be your solution. So, this is a very utility that inverse is

equal to transpose of the Q matrix Q inverse is equal to Q transpose.

(Refer Slide Time: 18:50)

 

Multiplication  of  a  vector  with  a  Q  matrix  a  matrix  which  has  orthogonal  column

preserves length of the vector and.

We can see that if I have a vector Q multiply with Q vector x multiply with Q Q x and

take it is l 2 norm Q x transpose. Q x is equal to x transpose Q transpose Q and which is

the term Q transpose Q is nothing but an identity matrix. So, it is x transpose x is equal to

x square. So, if a vector is multiplied with Q the length will be essentially same. When 2

vectors  are  multiplied  with Q their  dot  product  remains  same and the  proof  is  very

similar that, I have Q a transpose Q b is the dot product of a and b and I think they are

vectors.



(Refer Slide Time: 19:59)

So, I think I should not write this the proof is like Q a transpose Q b. So, I deleted the

capital A and writing small a because for vector. We usually use small letters and A is

usually, used for matrices which will not column or row vectors which is m into n order

or 2 dimensional element for 1 dimensional element, we use small letters anyway.

So, this is a transpose Q transpose Q b similarly like Q is a matrix with Q as Q I as

columns this Q small Q is a column vector and when we have number of column vectors.

We get the Q matrix anyway and this Q transpose Q is identity. So, this is a transpose b

so dot product between 2 vector remains same when, we multiply the both the vectors

with  Q and the  angle  between  the  vectors  should  also  then  remains  same when we

multiply them. Because, dot product is we have seen that is it was inequality, dot product

is related between the angle between the vectors.



(Refer Slide Time: 21:17)

If a vector b is expressed as a combination of orthonormal basis q 1 to 2 or we write b is

equal to x1 q 1 plus x 2 q 2 up to x n Q n. So, there is an orthonormal basis for R n and b

is vector in Rn. So, we can express b as the combination of this orthonormal basis some

constant coefficient into each of the column vectors basis vectors and the combination is

vector b. The coefficients can be calculated as take q 1 transpose multiply it with b.

So, q 1 transpose x1 q 1 q 1 transpose q 1 x is a x is a scalar it will come outside q 1

transpose q 1 is equal to 1 q 1 transpose. X 2 q 2 is x 2 into q 1 transpose q 2 and as q is

an orthonormal q 1 transpose q 2 is equal to 0. So, there will be q 1 transpose b is x1 q 1

transpose q which is this is one this is 0 this is 0. So, this will be x 1. So, finally, b can be

expressed as b is equal to. So, x1 is q 1 transpose b. Similarly, x 2 will be q 2 transpose b

x 3 will be q3 transpose b and so on b is equal to q 1 transpose b q 1 plus q 2 transpose b

q plus q n transpose b q n.

So, coefficients associated with each of the basis vectors is equal to projection of the

vector of the main vector. On each basis this is a very important extremely important

way of expressing a function vector this can be utilized for vectors like when we write a

vector  is  equal  to  3  I  plus  4.  That  means,  it  is  projection  on  I  along  I  vector  is  3

projection along j vector is 4 also in certain cases we need to Bessel function of a Fourier

functions Fourier series expressions.



When there is an expression with mutually of there is expression of continuous function

continuous functions of vector spaces in r infinity we have seen that are here. So, there is

something  r  infinity  there  will  infinite  orthonormal  basis  and  we  can  express  any

function as combination of this infinite orthonormal basis. if you can remember Fourier

series the coefficient for each term. In Fourier series, it is sin or cos term in Fourier series

is found out by taking the main function then multiplying it with that cosine function or

sin function or cos omega x or sin omega is and then they are doing that integration and

normalizing it.

So, this is basically projecting the main function along each of the basis vectors and

finding it is Fourier series it is important it is Fourier and Bassel series Fourier series

within the polynomial. All this series functions are composed of orthogonal basis vectors

in r infinity and we can express any function like that so never less Fourier series. Is the

as of now out of purview of this particular syllabus we move on.

(Refer Slide Time: 24:35)

So,  we  will  look  into  normal  equation  with  orthogonal  columns  let  us  start  with

rectangular matrix a with equation system ax is equal to f A has independent columns.

Therefore, there has terming at most one solution. However, f does not lie on the column

space.  And  so,  a  least  square  solution  or  a  normal  equation  is  to  be  solved  now a

somehow I will be transformed a to Q you will look into this formation and now the

equation is Q x is equal to b.



So, we did some matrix transformation matrix operations on a and got a form a is equal

to Q, Q is a set of Q has orthogonal columns. So, you get the equation Q x is equal to b

Q, x is equal to b is a rectangular system with no solution; for most b if, b does not lie on

the  column space  of  a.  There  is  a  Q,  there  is  no solution  the normal  equation  is  Q

transpose Q x tilde is equal to Q transpose b.

So, normal equation for base test tilde in which we can now say that Q response Q is

equal to I because, you has orthogonal columns. So, the normal equation reduces to x

tilde is equal to q i q transpose b. So, we have basically we have the solution that it here

x 1 x 2 up to x n is equal to q 1 transpose b q 2 transpose b. So, on Q n transpose b so the

solution is in one line if we can express a as Q. And then we can see that, P is equal to Q

x tilde which is the projection of b into the normal into the column spaces.

Basically, x Q multiplied by x so Q Q tilde of b. So, this is q 1 transpose b q 1 plus this

physically b expressed in terms of the Q vector q 1 transpose b q 1 up to Q n transpose Q

n b. And the projection matrix is Q Q transpose. So, in this these are interesting to look

that how is Q Q transpose all this things. However, what we can see that the least square

or normal equation becomes much very simple to solve if we can express a as Q and that

will give us the next drive that.

(Refer Slide Time: 27:22)



If we can transform A to Q or we can form orthonormal basis of column space form a

given set of column vectors. We have a set of column vectors basis of the column space

which are not orthogonal.

So, you cannot write Q x is equal to B and solve it very easily. You have a x tilde is equal

to f and then we have to solve it like the normal equation a transpose a x tilde is equal to

a  transpose  b.  We will  come  into  it  later  that  normally  solving  normal  equations

especially when will use literary methods has certain implications will come into it later,

but Q transpose what you got Q x is equal to Q transpose b. You do not need to solve it is

already solved if you can expressed a is equal to a transform a is as Q that in the normal

equation or we observed in the last slide. So, if you if instead of solving a transpose a x is

equal to a transpose, f you can solve the normal equation. In this form, which is very

simple it is already solved you do not have to do anything.

So, that that is our focus in next slide that it is useful to transform A to Q to form or to

form an orthonormal basis of column space, from a given set of column vectors and this

is called gram Schmidt process. So, you have a basis which are not perpendicular to each

other in R 2 which are not orthogonal basis vectors a and b. What we do we transform

make it and unit vector out of it, because, our target is to be orthonormal basis. So, you

divide a by it is length and get an unit vector q 1 which is an unit vector q 1 it project b

onto a and this projection as we have seen q 1 is the unit vectors.

So, this projection; so let s project it into the unit vector. So, the length it is accept results

(Refer Slide Time: 29:34) So, becomes q 1 transpose b q 1 because q 1 is along unit

vector along a projection along b. Projection along a and projection along q 1 will be

same the projection will be same and the left out part is b minus q 1 transpose b q 1. So,

this left out part should be perpendicular to the projected part p or perpendicular to q

So now, we can make another basis using the left out part. So, what we will do we have

found this term we have found q 1 basis another q one is. Let us say q 1 is one basis this

is also this should be independent b capital B which is b minus q 1 transpose b q 1 is

independent  from q  1 (Refer  Time:  30:04).  They should  also  form a  basis  and will

normalize it divided by it is length. So, you get an orthonormal basis before that sorry;

here we got an orthogonal basis in R 2 a and the b vector b minus q 1 transpose b q 1 and

then these 2 the vector a and this vector a and b they form an orthogonal basis in R 2.



And now, we divide both of the vectors by their length we get q 1 and q 2 form an

orthonormal basis in R2. So, this is the idea of gram Schmidt process you take 2 vectors

project  one  vector  onto  other  and  the  subtract  part  from  the  main  vector.  And  the

projected vector will be perpendicular to the projection use this 2 and form an orthogonal

basis

So, this is very straightforward for 2 vectors finding taking a considering a vector finding

it is component along one particular vector and perpendicular to that particular vector

that when.

(Refer Slide Time: 31:50)

So, this is what we get gram Schmidt process in R 2 we have the vector B project B to a.

Sorry, we have the vector a and then find out first orthogonal basis by dividing a by it is

length which is  q 1.  Then project  vector b 2 vector, and get the subtract  subtraction

which is b minus q 1 transpose b q 1 divide it by it is length. So, you get q 1 and q 2

which are orthonormal basis. So, these 2 q 1 q 1 and q 2 they are orthonormal vectors

and they give a basis in R2.



(Refer Slide Time: 32:34)

Now, if we go to R3 here 3 basis vectors. We do the exact same part for first 2 basis

vectors the third one is away from the plane. For 2 vectors, we will form a plane on that

plane we found; similarly, q 1 and q 2 2 basis vectors for that particular plane for the

third one first from q 1 and q 2 with 2 vectors as it was done for R 2. Now for the third

one form c subtract the component which is in the plane in form of a and b.

Now, this plane now has an orthonormal basis q 1 and q 2. So, project c alone q 1 project

c along q 2 subtract it form the c and you get capital C c minus q 1 transpose c minus

into q 1 minus q 2 transpose c Q 2. So, you get capital c and then third orthonormal basis

Q 3 is formed by normalizing c to unit vector c by modulus of c and then we can these 3

becomes a orthonormal basis vectors.



(Refer Slide Time: 33:40)

So, then we can continue it for higher dimension this is the one idea of whole gram

Schmidt process subtract from every vector every new vector, it  is component in the

directions that are already settled. So, you get the first you get 2 vectors settle this like

get to orthonormal basis vector settle. These 2 vectors then you have the 3rd vector you

subtract the component of the 3rd vector, which are when you project the 3rd vector onto

the 2 already settled vectors and then subtract the component from there.

So, you get another vector which is perpendicular to the first 2 orthonormal basis. So,

this and normalize it get the third orthonormal basis. So, you subtract every new vector

from the components that are already settled and then normalize it divided by it is length.

The idea is used over and over again when there is a 4th facto we subtract away it is

components in the direction of q 1 q 2 q3. So, gram Schmidt starts with independent

vectors a one a 2 up to a n and ends with orthonormal vectors. q 1 q 2 up to q n at each

step it subtracts from a vector a j which was part of the earlier basis it is components in

direction q 1 up to q j minus 1, which are already been found out. And there that are

already settled as a j is equal to this.

And then it divides a j by it is length and get the latest orthonormal vector in the set Q j

and so on. It can go for a number of vectors and find out the; it can take number of basis

vectors and find out the same number of orthogonal orthonormal basis for any set.
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So, gram Schmidt process can be obtained for m independent vectors in Rn. So, it is not

it  not necessarily  that,  it  has to form a basis you just have to have few independent

vectors and then create mutually orthogonal independent vectors out of that. So, take

independent vectors which are inclined to it and then create a set of mutually orthogonal

vectors. So now, the question is how we can apply it? For the matrix equations if the

number of vectors independent vectors in the initial set or number of columns of the

matrix is. All these are independent all these are an independent columns.

So, the number of columns in this space is equal to the dimension of the real coordinate

space. Then, we have a square matrix and we have solid perfect solution. If it is not, we

may have a normal equation we have to find out the best estimate. However, how can we

start with the matrix a normalize it is columns orthonormalize it is columns get a q form

and solve a x is equal to b. That will be the question which will address in the next few

classes.

Thank you.


	

