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Lecture – 22
Orthogonality between the Subspaces

Welcome.  In  last  class  we  took  an  example  of  rectangular  matrix  and  looked  into

different subspaces associated with it  and, observed that null  space and row space,  a

perpendicular  to  each other. In  a  sense,  any vector  belonging to  leave  now space  is

perpendicular to any vector in the row space, and same for column space and left null

space.  Also  made  a  comment  that  if  a  vector  right  hand  side  vector  b  has  some

component along left null space, it will be away from it will coming out of the column

space. And therefore, Ax is equal to b cannot be solved.

So, then this the these are due to the orthogonality between the spaces, null space, row

space, left null space and column space. We will explore it in more detail and we will

start  looking  into  what  is  an  orthogonal,  what  are  orthogonal  vectors,  what  is

orthogonality,  and  look  into  the  property  of  orthogonality  between  the  fundamental

subspaces.
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So, length first idea which is little away from what we are doing right now on matrices

and the properties of matrices; we will look into the definition of length of a vector. And

this is given the length of a vector is usually measured by the term norm, when measure

of the magnitude of a vector is norm. If you have a vector a 1 to an which is the vector

belongs to R n L P norm of the vector or pth norm of the vector; is defined as L P is equal

to absolute magnitude of each if each of the component raise to the power p, and then

some all the components and 1 by pth root of that. 

So, for different values of p different norms and defined; for taxicab norm is defined if p

is equal to 1 which is L 1, which is basically magnitude of each of the components of a

and summation of that. L 2 norm is defined for p is equal to 2 which is L 2 is root over of

a 1 square plus a 2 square up to n square. And L infinity norm is defined for p is equal to

infinity. So, all of these components are raised to the power infinity. And then we take 1

by infinite root of that.  So, the only the largest component stays there because,  1 by

infinity all the components raise to the power infinity, the largest components becomes

very large. 

And then only this  stays  when I  take  1 by infinite  root  of  that.  So,  it  becomes  the

maximum of magnitude of all the components of the matrix. This norm definition of this

norms are important and later we will see when we look into iterative solvers and try to

find out that convergence will use the norms for finding out convergence. The L 2 norm

is important because, if we think of a 2D or 3D vector, it is a length of the vector, and it

is also called it is a measure of length it is also called Euclidean norm.
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Euclidean norm is considered as length of the vector if I have a vector x 1 x 2 x n

Euclidian. So, 2D, 3D it is visible x 1’s root of or x 1 square plus x 2 square or root of or

x 1 square plus x 2 square plus x square; use me the length of the diagonal. These are this

can be visualized but, in higher dimensional vector this is found out in same way and

they are considered as a length of the factor. And we can see L 2 norm is given as this

form, 2 lines inside which x raise is root over of L 2 squared norm which is x 1 square

plus 2 square plus x n square is root over of x transpose x when x is a vector.

If we have a right angle triangle the equivalent of Pythagoras theorem, there is a law of

right angle triangles still stays that that the square length of squared of the length of 2

sum of the square of the length of the 2 sides is equal to square of the length of the

hypotenuse.  So, we have vectors x and y, and the hypotenuse becomes x minus y, x

minus y is not the vector; it my this is not the x minus y vector; x minus y vector any

vector should go through origin this is translated to get the vector difference.

Anyway so, we can write by laws of right angle triangle x squared, plus y squared is

equal to x minus y square. And we can expand them, and while and then by rearranging

and cancelling terms from which side, we can write x 1 y 1 plus x 2 y 2 plus x n y n is

equal to 0, or x transpose y is equal to 0. So, if x and y are orthogonal, we get x transpose



y is equal to 0 or which is basically equivalent of dot product of the vectors x and y, the

vectors we have 0 dot product.

So, we can write if x and y are orthogonal they will give a , they will have a x transpose

y is equal to 0 or y transpose x is equal to, when x and y they must be vector in the same

dimensional vector space belongs to R n; is important because n can be anything, n can

be more than 2 or 3. For 2 or 3 2 dimensional and 3 dimensional vector we know that

perpendicular vectors we will give zero dot product. But they are higher dimensional

vectors also if they are perpendicular they will give 0 dot product. We will go ahead with

this definition of orthogonality.
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If non--zero vectors are so, this idea is orthogonal vectors are independent. If non-zero

vectors v 1 up to v k are mutually orthogonal, every vector is perpendicular to every

other bracket close here. Then these vectors are linearly independent. So, you so, this is

like if I have one vector 2 perpendicular vector they are linearly independent if I get

another perpendicular vector in R 3 they will be linearly independent. In R 4 if we get

some way another perpendicular vectors the all these vectors are perpendicular to each

other. They will be linearly independent.
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So,  the  proof  is  that  considered  the  orthogonal  vectors.  These  vectors  are  mutually

orthogonal. So, each vector dot product with other any other of the vector is 0. So, and

now for linear independence we have to combine them and show that the coefficients are

0. So, take c 1 v 1 plus c 2 v 2 up to c k, v k and show that c 1, c 2, c k is equal to 0. If

they are independent, if they are orthogonal then v 1 transpose v i is equal to 0 for i

naught is equal to 1 as the vectors are orthogonal.

So, what we will do? We will multiply this equation with v 1 transfer, which will be v 1,

sorry, which will be v 1 transpose into c 1, v 1 plus v 1 transpose into c 2, v 2 plus v one

transpose c n v n. And this should also be equal to 0. Because the left right hand side of

the a 0. So now, v 1 transpose v 2 c 2 is the constant this come out v 1 c 2 is the scalar

and this will count come out. So, we one transfer v 2 is equal to 0. So, this will be 0,

similarly, this will be 0 and we will get v 1 transpose v 1 is equal to 0.

And now it has been said that the vectors are non 0. C 1 is 1 0. Therefore, c 1 is equal to

0. Similarly, we can multiply it with c 2, c 3 and c k and so that show that the sorry, you

can multiply it with v. V 2 transpose v 3 transfers v k transpose, and show that c 2 up to c

k is equal to 0. So, mutually so, this relationship will only hold when c 1, v 1, c 2, v 2, c

k, v k will only hold when c 1, c 2 is equal to 0; is the vectors are orthogonal. And



therefore, mutually orthogonal vectors are also mutually independent. This is trivial if we

look into few examples. This looks very trivial.
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For example, the coordinate vectors e 1 e 2 e n in R n orthogonal vectors. Say we have R

2 and we have the coordinate 1 0 the e 1 this is e 1. And e 2 is equal to basically i e 2 is

equal to 0 1. They are mutually orthogonal vectors and their also independent vectors. In

R 2 1 0 and 1 0 1 are orthogonal. They form the simplest basis. The orthogonal vectors

form the simplest basis in R n. Each vector e i has a length of 1, like i and j, j k they have

a length of 1, and they are called orthonormal basis 2. A mutually orthogonal vector, if it

is R n, n mutually orthogonal vector will give us n mutually independent vectors which

will be a basis. 

And if these, vector have done in magnitude of 1, then we call this as a orthonormal

basis.  Normal  is  associated  with  dimension  magnitude  1  in  this  case  that  R. And

orthogonal basis rotated by an angle theta gives another set of orthogonal basis. So, 1 0 0

1 and we if we rotate them by theta like this is 1 0 0 1, and if we rotate them by angle

theta is they will be the intervect basis, basis will be rotated by angle theta, and they will

be cos theta sin theta and minus sin theta cos theta. So, they will be again a orthogonal

basis.  So,  one  orthonormal  basis  rotate  orthogonal  basis  one  orthogonal  basis  or

orthonormal basis rotated by another. Certain angle will remain a orthogonal basis.



So, there are several orthogonal vectors like that an orthogonal vectors are independent

vectors.  Therefore,  if  we have  n  orthogonal  vectors  in  R n  we should  get  a  get  an

independent vector which will form a basis. And it is an important and useful if we can

have orthogonal basis. Why because, we can very easily divide get the components of a

vector  along each basis  decompose a vector  along mutually  orthogonal  and mutually

independent basis like we do for vectors, for vector calculus or vector algebra, when we

have a i plus b j, we can say a is component along x axis, b is component along y axis,

and thing becomes very easy to handle.

(Refer Slide Time: 12:24)

Then comes the idea of orthogonal subspace. Two subspaces V and W of same space R n

are orthogonal;  is every vector in v every vector small v in V is orthogonal to every

vector w small w in W, or v transpose w is equal to 0 for all v ad w. So, any vector in one

particular vector space is one subspace is orthogonal to a vector in another subspace. So,

if we considered any vector along like the if we considered this vector and this plane and

this slide, any vector along this plane is orthogonal to any vector along this line.

And now, we will tell that there orthogonal subspaces. This space is orthogonal to this

subspace.  So,  one  subspace  is  orthogonal  to  another  subspace.  Any  vector  in  one

subspace is perpendicular or orthogonal to any vector belong to the other subspace. And

they are called orthogonal subspaces. Zero vector is orthogonal to a subspace. So, I take



dot product of 0 vector  with any vector belong to any particular  subspace it  will  be

always 0. So, 0 is always orthogonal to all subspace.

In a  R 3 a line maybe orthogonal  to  a  plane or a  line.  Like,  like this  line  this  is  3

dimensional space R 3 can be orthogonal to this particular line. So, this particular line

this particular lines. So, a line can be orthogonal to a line or any multiple line. And a line

can be orthogonal to a plane also. So, these are orthogonal subspaces; however, and this

is again interesting a plane in R 3 cannot be orthogonal to another plane. Why? If we

think of quickly we can think of these 2 planes, ok. 

Are  they  orthogonal  to  each other?  It  will  looks like  any vector  along this  plane  is

perpendicular to any vector along this plane; however, they are not orthogonal to each

other. And we can see that let us consider 2 planes in R 3, and there is at least one vector

a, which is basically the common each of the planes. And this belongs to both the planes.

If we take multiply dot product of this vector to itself, it is non 0.

So, plane is not orthogonal to plane.  Line can be orthogonal to a plane in R 3. It is

important that the ortho the dimension of the orthogonal subspaces when we add them

up, like for plane that I mention is 2. So, 2 planes they have both have both of them have

dimension 2. If we add them of we will get a dimension 4. It cannot be in orthogonal in

R 3. In R 3 the dimension of orthogonal subspace as can be added and that should be less

than equal to 3. This is important you can (Refer Time: 15:34) over it will more.
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And  it  gives  the  fundamental  theorem of  orthogonality,  which  says  the  row spaces

orthogonal to null space; the column space is orthogonal to left null space. Row space

and  null  space  are  in  R  n  and  column space  and  left  space  null  space  are  in  R n.

Remember  the  sighted  in  the  last  class,  we  found  out  that  those  space  is  coming

orthogonal  to  null  space,  and column space  is  coming orthogonal  to  left  null  space;

however, we will try to find out the proof of this, except looking into 1 or 2 theorem. So,

it is important that by 1 or 2 examples, we can verify the statement; however, the proof

should be more generalized and should not is not only varificable it should be provable.

So, we will look into the proof, there are 2 2 proofs. The first proof is that null space is a

solution of Ax is equal to 0. So, what is Ax is equal to 0? If I try to write down the Ax is

equal to 0, this is a 1 1, a 1 2, a 1 n, a 2 1, a 2 2, a 2 n n comes up to a m 1, a m 2, a m n.

And x 1, x 2, x n is equal to 0. So, I can see a 1 1 x 1 plus a 1 2 x 2 plus a 1 n x n is equal

to 0. Which is basically dot product of a r, first row of a. What is it? This is a a 1 1 a 1 2 a

1 n, dot x, dot n transpose rather transpose of this with x 1 x 2 x n. Now transpose of this

dot x sorry transpose. 

This will be 1 1 1 x 1 plus 1 2 x 2. So, each row multiplied with the like x vector gives us

0. Therefore, each row is orthogonal to the x vector. So, we can say that row space is

orthogonal to the null space, when Ax is equal to 0; x is the solution of null space.  So,



null space is the solution Ax is equal to 0. So, dot product between any row of a an x is 0

and therefore, they are orthogonal.
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The second proof is that if x is null space vector, then Ax is equal to 0. Let us see v is a

row space vector. So, v can be considered as combination of rows. And v transpose v

multiply A transpose which the columns and now the rows of A, A in columns of A

transpose with a vector x. So, is z sorry, so, z 1 first column of A transpose plus plus z 2

first column of a transpose; is basically z 1 into first row of A plus z 2 into second row of

A and so on.

. So, v is equal to a transpose z is the row space vector, because this is linear combination

of the rows. Now we if we write v transpose x, which is a transpose z v is equal to x

transpose  z  whole  transpose  x.  In  this  becomes  a  transpose  Ax  by  the  property  of

transpose which is z transpose 0. And as Ax is equal to 0 z trans z transpose Ax is equal

to 0 so, z transpose 0 so, this is 0. So, v is perpendicular to x so, any row space vector

becomes perpendicular  to the null  space vector. And row space is orthogonal to null

space. So, we get row space is orthogonal to null space.

So, what we got? Row space and null space both belong to R n, dimension of row space

is R dimension of null space is in minus R. So, if there are R vectors in row space, there

are m n minus r vectors in null space. These are vectors any of this vector in R vector is



orthogonal to n minus r null space vector. So, any of this vector is mutually independent

with  the  null  space  vectors  So,  if  we have  n minus  and null  space  basis  whish  are

mutually independent, any of the row space which is mutually independent with that.

Therefore, all R row space basis are mutually independent with the n minus n null space

basis.  So,  this  R and this  n minus r  gives  me a total  set  of n mutually  independent

vectors,  right.  Rather  than  row  space  vectors  are  orthogonal  to  null  space  vector.

Therefore, they are independent of a null space vectors.

So, each of the row space vector is mutually independent of with linearly independent

with all of the null space vector. So, you get a of basis in null space, where we have n

minus r independent vectors. And we get a basis in row space with they we have R

independent vectors. So, there are R independent vectors, there n minus r independent

vectors, and they are also mutually independent. So, you get a total set of n independent

mutually independent vectors. This is in R n; R n are total set of n vectors we will form

the basis. So, row space and null space combining we can span the entire R n, sorry.
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So, yeah the row space is orthogonal to null space in R n. So, any vector in null space is

orthogonal to any vector in row space. So, A row space vector and the and null space

vector are linearly independent. N A is null space of A has dimension n minus r subspace

of n. C A transpose c 0 is row space of a dimension R subspace of R n. So, if we combine



n minus r basis of null space and R basis of row space, we get n independent vectors of

null space and row space. And they form basis of entire R n.

So, we can also write that null space and row space combinedly span entire R n. Because

basis of row space and basis of null space they are farming basis of R n. So, this meaning

entire R n. So, null space so, for example, this is null space and this is row space, this

span the entire R n. So, in R n in the mean vector space if there is something which is not

belonging to row space that n must be in the null  space.  Or something which is not

belonging to null space, that must be in the row space, because combindely we get the

entire space.

(Refer Slide Time: 23:26)

Null space and row space when combine spans the entire R n. So, every vector, every

vector orthogonal row space is contain in null space. Every vector which is not in row

space is a member of null space. And given a subspace V of R n the space of all vectors

of orthogonal to is call the orthogonal complement of V, and divided by V perpendicular,

perpendicular  sign  or  perpendicular.  Therefore,  null  space  becomes  an  orthogonal

complement of row space. Whatever is orthogonal to row space, whatever does not lie in

row space must be null space.
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And if we can write null space is orthogonal complement of row space. And similarly we

can show left null space n is orthogonal complement of column space.
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So now, if we start looking into Ax is equal to b. We may last class we took an example

and observe that they are the particular and null space row space column space left null

space. So, started from last class row space looked into column space left null space. So,

that they are perpendicular. Now in from more general sense we are coming that they are



orthogonal  complement.  Left  null  space  and  column  space  is  also  orthogonal

compliment.  I  am  interested  specifically  in  column  space  at  this  stage,  because

something which does not belong to column space now we know that they belong to left

null space.

If the b vector does not belong does not lie and column space, then Ax is equal to b is not

solvable.  That  is  why I  am specifically  interested  in column space and null  left  null

space. So, if I can say that b has a component along left null space,  b is away from

columns presented b is does not is not a column space vector and Ax is equal to b is not

solvable. So, we will look into solution of x is equal to b from the ideas of orthogonality,

orthogonal complements etcetera; Ax is equal to b solvable if b lies in column space.

Left null space is orthogonal complement of column space in R n. So, if any vector does

not remain to columns space, it will have some component in left null space. It may be

entirely in left null space or maybe combination of some use a some basis in left null

space and some basis in columns space may be a combination of that.

Or we can say that say this is the in R n this is the null left space and this is column

space. Now, we get a vector b which is away from which is not on the column space,

which comes along the column space. And it must have 2 component, one is along left

column space and one is along left null space. So, if a vector b has some component

along left null space, it must not be in column space. Therefore, Ax is equal to b will not

be solvable; Ax is equal to b solvable when it is entirely in column space, and b does not

have any component with left null space.
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Ax is equal to b solvable when b has component in left null space, or b lies in column

space and is orthogonal to left null space. That is for existence of solution Ax is equal to

b, b transpose y is equal to 0, b whenever a transpose y is equal to 0.

A transpose y is equal to 0 is left null space equation. And this implies that y belongs to

left null space. And then b transpose y is equal to 0 will imply that b is perpendicular to y

or y which belongs to left null space. So, if orthogonal to left null space or b transpose y

is equal 0 when a transpose y is equal to 0, then b is orthogonal to left null space means b

lies in column space. And Ax is equal to b will be solvable.
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Ax is equal to b, x is equal to 0. So, we look into solution of Ax is equal to b further. Ax

is equal to 0 is the null space solution. Each row victor has a dot product with null space

vector x to get a product zero as they are orthogonal. Solution of particular equation Ax p

is equal to b imply that xp is not orthogonal to the row space, or x p does not lie in null

space. If Ax is equal to 0, then x has a 0 dot product with a, and x is a null space vector.

Remember for particular equation is first found out particular solution, we first found out

the null space equation and then did not consider the null space equation, only solve for

particular solution when xp is equal to b in case we have multiple solutions.

So, this equation x p is equal to b says that x p and not orthogonal. They have a non-0 dot

product. So, x p does not lie in null space. As null space and row space are orthogonal

complements, if it does not lie in null space is must lying row space. So, the solution x p

of Ax p is equal to b belong to row space. Therefore, the solution vector always lies in

the row space. Solution vector of a non-null non homogeneous equation; x p must lie in

the row space. Whatever does not trying null space in R n must lie in the row space.

Therefore, if I am when I am solving Ax is equal to b, the x I am finding that is the row

space vector. That lies in the row space.
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In case of unique solution null space is zero vector so, everything will lie in row space.

So, any solution of Ax is equal to b if non-zero, 0 means it is both 0 is also a part of null

space.  But  for  non-homogeneous  equation  Ax  is  equal  to  b  must  give  a  non-zero

solution. And if in case non-zero it must lie in the row space. Therefore, if we consider

the equation Ax is equal to b, x, x is a row space vector, right? And b is a column space

vector. So, if I multiply a row space vector by the make it is A, it will transform it to the

column space vector, the product is column space vector. 

And we can say every matrix a transforms it is row space to a column space vector. It is

in the sense we can try that, we can take row and multiply with A and the product will be

nothing but a column space vector, a combination of columns. Now, this is a this 2 or 2

few like last few discussions give us a few important one very important theorem of

linear algebra, which is we call fundamental theorem of linear algebra. That is, Ax is

equal to b solution x lie in the column space; lie in the row space, sorry.

The row space vector x is any row space vector let us consider multiplied with a will

give me some b which is in the column space vector. Whatever does not lie in b in R n

must lie in the left null space. Whatever does not lie in row space in R n must lie in the

left  null in the null space. And any null space vector when multiplied with the main



matrix A will give me the 0 vector. Ax is equal to 0 the null space equation. And this is

pictorial representation of the fundamental theorem of linear algebra.
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And I have a row space which was dimension R, which is perpendicular to a null space

which is dimension n minus r. Now and there is a column space which has n dimension

R, left null space as dimension n minus r. Now, I take any vector in so, the left hand side

is R n and the right hand side is R m. Now I take any vector in R n which is an x vector,

it has 2 component. One is along the row space; another is along the null space. The row

space component when multiplied with the matrix A, we will go to the column space Ax

is equal to bx. 

The null space component when multiplied with A we will take us to the 0 solution. And

now if we get Ax R is equal to b which is in the column space. Now if I invert it, this is

the mapping the row space is being map to the column space. If I invert it, column space

will always have an unique mapping in the row space because, this solution is unique.

The null space solution is non-unique, anything multiplied with null space can take me.

So, if I have another null space vector that would have been taken me here. If I had

another null space vector that would have been taken me here.

So, and based on this null space, we could have different values of x, we could have

different values of x. So, outside null space if x lies outside row space, Ax is equal to b



can have infinite solution. If x is in row space the x is equal b has exactly one solution.

Ax is equal to b solvable if b is in the column space. If b is away from the column space

Ax is equal to b is not solvable.
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And x r is in row space, Ax r is equal to b is in the column space. Every matrix maps it is

row space to column space, and this mapping is invertible. So, we can get exactly same

x, if I invert b, if I put multiplied b with A, A inverse we will get back to x r. However,

the null space mapping is not invertible, it can take us to anywhere in the null space 0

inverse 0 can take us anywhere to the null space, x n is in null space. Ax n is equal to 0 is

a 0 vector. And the final solution Ax is Ax n plus x r is equal to b plus 0 is equal to b plus

0 is equal to b.

 And this is pictorial representation of the fundamental theorem of linear algebra. Now

what remains in question is that incase b is not in the column space. Of course, it has no

solution.  But  if  we  think  from  statistical  point  of  view  from  a  point  of  view  of

optimization, there can be something which approximately satisfies, the equation b is not

in the column space, but b has a component along column space can we solve for that

part. We and will look into subsequent classes, what should we do in case Ax is equal to

b has no solution, b is not on column space, but b has some component in column space,



and some in left null space, what is the solution for that. So, we will we will do it in the

subsequent classes.

Thank you.


