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Hello. So, today we will discuss a very important topic of matrix solvers, which actually

gives  us  shows us a  light  why should we use matrix  solvers which  is  how physical

systems can be represented as matrix equations, and what are the errors associated with

it.
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So, this is matrix representation of equations coming from physical systems. System of

linear equations with multiple variables can be expressed as matrix equation; this is the

basic  definition we went  through that  in the first  few classes.  Physical  systems with

multiple degree of freedom can give matrix equation. 

For example, if we think of a linkage per mechanism, where something like mechanism

with many links with each link has its own degree of freedom; each hinge has its own

degree of freedom; and then we can get a matrix equation defining the motion of all the

links.  And  this  motion  we  will  get  a  matrix  equation,  when  there  is  some

interdependence  among  the  motion  of  different  degrees  of  motion  associated  with

different degrees of freedom.
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Now, there also can be a what is called a continuum, where it is not discrete bodies or it

is not collection of discrete bodies, rather it is a continuous medium like air or like an

iron bar, we cannot really identify each discrete molecule, here we think it is it is to be an

continuous space where we can get rate equations. And this rate equations can also be

converted to matrix equations by using what is called Taylor series approximation, and

using some other methods. And we will look into some of these methods in today’s class.

But the continuum we will have infinite degrees of freedom. For example, if we think of

a continuum space, and we are like this is a metal metallic strip, here we are solving heat

conduction equation, which is like del T del t is equal to K by rho c p del 2 T del x square

plus del 2 T del y square an equation like this.  So,  there are anywhere in this  point

temperature has a variation T x, y and there should be therefore, there should be infinite

values of T x, y. For any x y; x y can it is a continuous space can have infinite values for

any x y there can be one particular T x, y.

So, we will have a infinite degree of freedom space, but it can be approximated to a

discrete finite number of freedom space in state having a continuous space, we can have

many small control volume like of things or many small node points inside the domain,

and we can try to see what is the rate equation or the matrix form of the rate equation at

that particular point. And we can have though continuum ideally have infinite degree of



freedom, but it can be approximated with large number of discrete variables. So, we will

see it through an example.
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And this is this method is called discretization or continuous space is discretized to a

finite degree of freedom space. It is a journey from which analytical methods brings a

numerical method. We have a differential equation, here are all rate equation del t del t

like del capital T del T is equal to something, this is rate of change of temperature or del

2 T del  x square plus del  2 T del  y square is  equal  to  0,  which is  state  conduction

equation is also rate of heat flux, how heat flux are related.

So,  these  rate  equations  are  differential  equations.  And  if  we  use  a  any  computer

program, computer does not understand about the differential equation; it does not have

any idea, what a limit is, how to make take derivatives, what is continuity of a function,

computer  cannot  work  on  differential  equation.  What  computer  can  do  it  has  some

electronic components, which can operate logical gates and through which it can handle

addition, subtractions.

Therefore  differential  equations  are  to  be  transformed  to  difference  equations  for

computer programming. And we can see an example here that one-dimensional steady

heat conduction equation, which is k d 2 T d x square is equal to 0. So, this steady heat

flow for constant conductivity. We considered a straight rod with length x is equal to

length unit length x is equal to 0 to x is equal to 1. It is given with boundary condition,



temperature is 0 at x is equal to 0; temperature is 1 at x is equal to 1; and the equation

governing equation is steady heat conduction equation, which is k d 2 T d x square,

which is equal to 0. Now, I know analytical solution is trivial in this case, it is very easy

in  this  case.  But  if  I  try  to  solve  it  using  a  computer  program,  computer  will  not

understand what is d 2 T d x square.
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So, what we have to do we have to transfer transform this into a difference equation. In a

sense I said infinite degree of freedom represents a continuum space a long rod every

point inside the rod is a member of the continuum, and there are infinite points inside the

rod. A line has is a collection of infinite points. However, when we try to do a computer

programming to solve this, we have to discretize into number of finite number of points,

and this is called discretization. So, instead of solving the equation at all the points along

the rod, we solve the equations at finite points, which are shown as certain points.

And we assume that all these points are equi spaced, so we will call it an uniform mesh.

A mesh  is  basically  arrangement  of  the  points  in  which  we  are  trying  to  solve  the

equation.  And  the  discretized  geometry  has  8  this  finite  points,  and  the  difference

between them is d x. This method which we will use here is called the finite difference

method. So, now, at any point say point number 5, it is a temperature is a function of

space we assume, temperature is given as d x. At a point d x away from 5, which is point



6 temperature is T x plus d x. And a point d x in the backward side of the d x, d x away

from the T x from point 5, which is point 4 temperature is T x minus d x.

Now, if I use Taylor series expansion, T x plus d x can be expanded as T x plus d T d x

into d x plus d 2 T d x square into d x whole square by factorial 2 plus d 3 T d x cube into

d x whole cube by factorial 3, where d 4 T d x 4 d x whole 4 whole to the power 4 by

factorial 4, and it goes on up to infinite points. Interestingly you see, d x the total length

is 1, so d x is less than 1; d x is equal to basically 1 by 7 here. So, d x to the power 4 is 1

by 7 to the power 4, which is a small number, which is less than point less than 0.01

even, d x cube is also a small number.

So, if we increase the if we go for the higher order terms, it is d x to the power 8; d x to

the power 10; d x to the power 11; which is a very small number. And in practical cases,

we can eliminate those numbers, because the difference in temperature due to those small

variation is probably non even non measurable by any standard measurement techniques.

So, you can easily discard the higher order term. So, however, we are not discarding it at

this stage.

(Refer Slide Time: 09:01)

What you see, we can similarly do a Taylor series expansion for the next term, which is T

x minus d x is T x minus d T d x only, because d x is negative here, so only the even odd

terms; odd power terms will have a negative coefficient.
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Now, what we will do, we will add these two equations. So, if we add A with B what will

happen; the plus d T d x minus d T d x will cancel out plus d 3 T d x T minus d 3 T d x T

will cancel out and then x terms will cancel out. So, only even powered terms will be

there or powered terms will be canceled out. And if we add A and B, we will see T x plus

d x T x minus d x is equal to 2 T x plus 0 plus 2 d 2 d 2 d x square d x square plus 0 plus

2 d d 4 T d x 4 d x 12 to the power 4 by 4.

So, what is T x plus d x, if we look into our previous slide T x is T 5 point 5 temperature

this is T 4, and this is T 6. So, we can see the derivatives second derivative fourth order

derivative  are  function  of  the  discrete  point  temperature.  So,  we  will  do  a  little

rearranging here. 

If we rearrange this, so after rearrange, if we rearrange the equation, we can write d 2 T d

x  square  is  equal  to  T x  plus  d  x  minus  2  T x  plus  T x  minus  d  x  these  are  the

temperatures; at those finite points divided by d x whole square plus some 4 derivate into

d x square whole square divided by factorial 4 plus higher orders of d x. Right now we

are not writing them, because they are even smaller numbers.

Now, if say d x we assumed 10 points, so there are 9 intervals d x is 1 by 9; d x whole

square is 1 by 81 which is a small numbered x whole to the power 4, which will be the



next term here, is 1 by 81 square, which is even less than 10 to the power minus 3, which

is even a smaller number. So, what we will say, we will approximate this particular part

as the expression for d 2 T d x square. This will be my this particular part will be my

approximation for d 2 T d x square.

And the later part we will not consider here, we know it is a small number, and as we

will increase the number of points as d x will be smaller, this will be further smaller. So,

this will be considered as the error in our approximation, and it will be discarded in the

approximation. We know that we are making an error, but we know what is the error;

error is of the order of d x whole squared, because the other terms are of a much higher

order, and the error is small due to the all the other terms. So, maximum error is of the

order of the d x whole square.
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So, we call this to be discretization error. 2 d 4 T d x 4 d x whole square by factorial 4 is

the largest term in the error. If the rod has length L d x is 1 by L, which is less than 1 and

N is 10 d x is N is number of spacing; it is not number of points. 

N is number of spacing, so d x is 1 by 10, and d x whole square is 1 by 10 to the 100 in

our particular case, it is probably d x is 1 by 8. So, d x whole square is again a smaller

number. And we will see that this terms d x whole to the power 4 is again much smaller

than d x square, because as d x is less than 1.



So, this will be a further smaller number d x whole to the power 6 will be much much

smaller than d x whole square. So, this is the large largest part of error, and this is called

a  discretization  error.  As  we  increase  the  number  of  grid  points,  N  increases  and

therefore, d x reduces and the error will reduce. So, as we increase the number of points

as N increases; d x reduces; and the error which is of the order of d x square further

reduces, so this is the error further reduces. So, I will use more and more grid points the

errors will be smaller.
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Now, one thing is that we assume that uniform mesh in a sense, all the grid points are

equi spaced from each other. It is also possible that this is not an uniform mesh, rather an

non-uniform mesh. And in certain cases specially in fluid flow calculation we see that lot

of most of the variations are near one particular boundary, so you put more mesh points

there, we and we use less mesh points away from that boundary. 

Then what we use a non-uniform mesh that all grid points are not equi spaced. And here

we are taking a multiplier r by which the spacing between two grid points are increased.

And if  we have a  non-uniform mesh,  we can still  write  Taylor  series  expansion for

different  points point 5 is  T x; point 6 temperature will  be T x plus rdh,  which is  a

difference here point forced temperature will be T x minus dh.

So, Taylor series for point expansion for T x plus rdh and T x minus dh can be written.

And now we have to eliminate d T d x term, because we want the expression for d 2 T;



we want the expression for d 2 T d x square in terms of T x plus rdh T x, and T x minus

dh, which is T 5, T 6; this is T 5 and T 4, we want the expression for d 2 T d x square in

terms of that. So, what we will do we have to eliminate d T d x, so we will add A with r

times of B, so that this terms are eliminated. And A plus r B will give me d 2 T d x square

is of little complicated expression.

However plus the error now is of the order of dh not of dh square. So, there is one caveat

here, if we use uniform mesh, we get using 3 points, we get second order accurate error

for d 2 T d x square as well as for d 2 T d x square. For non-uniform mesh using 3 points,

we will only get a first order accurate error. So, the we need to have more more and more

mesh points in order to have list error solution as compared to the case we have seen

previous for the uniform mesh case.
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However, so what we end here is basically this one of the previous expression, if we see

the if we see the previous expression, what we are ending here is a equation of d 2 T d x

square in terms of one particular locations temperature T i temperature of the location

next to it, and temperature of the location previous to it. 

And these locations at the finite points what we consider to be our grid points or the

mesh;  we consider  constitutes  of  all  this  finite  points.  So,  now, we will  get  similar

equation  for  each  and  every  point  in  the  mesh,  so  we  will  get  an  equation  system

essentially.
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And let us see, so this is what we are getting for a uniform mesh d 2 T d x squared is

equal to 0 will give me T x plus d x minus 2 T x plus T x minus d x by d x square. So, for

any point any point i if this is if this is T i, this is T i minus 1, and this is T i plus 1; and

these two are the boundary points. So,  for except  point 1 and point 9,  because their

temperature i already know from the boundary conditions; for point 2, 3, 4, 5, 6, 7, 8 for

all this seven points, I will get seven such equations.

And this  and there will  be an error of course d x of the order of d x square.  These

equations are T 1 minus 2 T 2 plus T 3 is equal to 0. So, there are total seven equations,

and all these equations look very similar only, because the weights of each the central

term and the next to next and previous terms are same. 

And in this equation we also have the boundary condition, which is T 1 is equal to 0, so

we have to substitute this here; we have T 9 is equal to 0; we have to substitute it here.

And we will set of get a set of linear equations for temperature 4.12 2 to 8 for this seven

point.
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So, in order to find out what is temperature distribution here, we have to solve this set of

equation. And what we get a in a matrix form, we get a particular matrix equation. And

this is if we look into this matrix, there is one diagonal term there is one diagonal term,

and there are two of diagonals next to it and rest all this terms are 0. So, this is a sparse

matrix, where most of the terms are 0. 

This is also a banded matrix if we recall the very first discussion on types of matrices,

these are sparse matrix this is most of the this is the banded matrix because most of the

non zero terms are clustered near the diagonal term with a bandwidth up to one term

away from the diagonal one term below the diagonal. So, we can say that this is called a

I am sorry this is a banded sparse matrix called a tridiagonal matrix.
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Another thing which is important here is that that this matrix if we will have a solution of

this matrix only due to the fact or we will have a sorry. We will have a solution of this

matrix because we have substituted the boundary condition that is why we can write it in

a matrix form. 

And then if the right hand side boundary T 9 is equal to 1, if that was not 1 this would

have been 0 and the entire set of equations would have given me a trivial solution T is

equal to 0.
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And that physically we can also see that if T is equal to 0 here and T equal to 0 here,

there will be no heat transfer across the rod; so temperature everywhere will be0. So, it is

important  that  we  make  T  is  equal  to  1  here.  So,  that  there  is  some  temperature

distribution inside it that temperature is not trivially 0 and as I said like this is a banded

sparse matrix under tridiaginal matrix.

Now this is for a 1D matrix. For a 2D matrix, the equation is k del 2 d del x square plus

delta 2 t del l y squared is equal to 0 temperature boundary temperatures are defined at

all four boundaries, there are four boundaries now. And if I try to discretize it, it should

be a 2D meshing, there will be mesh points in x direction or along i, i minus 1, i i plus 1

along i as well as there will be meshing in j and spacing in x meshes in along i is d x and

along j is dy.

And we can convert this two terms del 2 T del x squared and delta 2 T del y squared

similarly using Taylor series that this del 2 T del x square can give me T i plus 1 is partial

derivative. So, keeping j constant it is a the same thing Taylor series will be applied in x

direction  keeping  y constants,  and also  del  2  T del  y  squared  will  be  given as  this

particular term and the order will be of d x d y square.

And now if we, so we if there are m into n points, we will get same m into n equations.

And if we can re number the points like 1, 2, 3, 4, 5, 6 say here 11, 12, 13. If we can

renumber the points from i, j k to i j to one particular number which will move along the

mesh, we can form it as a matrix equation. And we can also write this to be a matrix

equation with after sequential numbering of i j points. So, both this 1D, 2D even for 3D,

we can also get similar matrix equation. 
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Laplace equation which we started here, Laplace equation which we started here can be

converted into a difference equation and finally, we can get a matrix equation out of it.

So, many physical equations can actually be converted into difference equations.
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And this  method  is  called  a  finite  difference  method  this  is  based  on Taylor  series

expression  of  different  terms  unknown variables  are  solved  at  fixed  number  of  pre

defined discrete  points  or  nodes  which are doing here.  The error  is  bounded by the

truncated term of the difference equation. And this error is a function of delta x or delta y



or d x d y or d x which is the distance between two grid points in the space.  If we

increase the number of mesh points, then the distance between two mesh points reduce

dx reduces and the error which is of the order of d x square or of the order of dx reduces

and we get more accurate solution.
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Now, finite difference method when we use we have seen we get a banded diagonal

matrix. For Laplace or Poisson equation which we have shown here we get a tridiagonal

matrix if you are solving one-dimensional problem. For two-dimensional problem, it is a

penta diagonal matrix. 

So,  it  is  a  matrix  of  five  bands,  bandwidth for  tridiagonal  bandwidth is  3  for  penta

diagonal  bandwidth is  little  more than 5,  but there are five diagonals.  For say a 3D

problem,  it  gives  a  spectra  diagonal  or  there  are  7 diagonal,  1  diagonal  and six  off

diagonal bands in which all the nonzero terms are available remaining everything is 0.

So, these are sparse equations sparse matrices and also banded matrices which we get.

And if we use an uniform mesh then the matrix is symmetric. If we see the matrix we

obtained in the 1D case using uniform mesh, this is a symmetric matrix also. And there

are certain issues with this particular tridiagonal matrix there are certain issues also its

symmetric matrix which we will discuss in later classes. But today we will also looking

to tri diagonal matrix or in the next class we will look into the tridiagonal matrix solution

algorithm.
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There are other methods like finite volume method. In finite volume method, instead of

doing a Taylor series approximation, we do a little more physics based approximation,

which is that heat conduction equation from a particular volume control volume can also

be considered as the rate of conservation of heat or conservation rate of conservation of

heat flux in the volume, heat generation within the volume is equal to heat loss as fluxes

from the CV surface.

So, we write it that heat generation is equal to we calculate fluxes from each of the cell

surfaces  heat  generation  is  equal  to  the  net  heat  fluxes  into  the  area.  And  if  heat

generation is 0 for study conduction, we get that the sum of the fluxes multiplied by area

and then we divide by the volume. So, sum of the fluxes divided by d y sum of the y

fluxes divided by d y and sum of x fluxes is divided by dx is equal to 0, which can be

converted into an equation fluxes are difference of temperature divided by divided by the

area. 

So, we can which can be contributed into a temperature based equation and we can get

similarly matrix equation.
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The other method is finite element method which is a very rigorous method specially

applicable for irregular geometries find a difference we have developed it for a regular

Cartesian geometry. Finite element can be applicable for complex geometries. Here the

entire domain is discretized into a number of smaller elements the trial or test solution

assumed within each element. 

And then the error is estimated from the trial solution, we get a trail solution which is not

the actual solution put it back to the original equation and see what is the error. And then

we minimize the error total  area inside each note is  integrated and the integration is

integral  is  minimized  to  get  a  trial  solution  which  will  have  listed  at  or  maximum

accuracy. 

This is mathematically sound with different element shapes complex geometries can be

handled. The issue is that it has a difficult mathematics and discretization in certain cases

can be very difficult.
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However, the errors associated is important to look into it we have discretized about

discussed about discretization error which is due to converting the differential equation

into difference equation this approximation. And this error is a function grids spacing as

the grid spacing reduces the shaded reduces or as the number of points increases this

error reduces. 

There is another error called round off error or error which depends on the precision of

the  computer.  And  for  example,  if  I  am  calculating  22  by  7  which  is  a  good

approximation for the pi which is a number goes which goes on and on and if we use a

computer it cannot calculate pi up to the infinite decimal precision place, it will cut the

value somewhere else. So, the remaining part becomes an error here which is called a

round off error.

Now, as the number of points increases in each point I am doing some round off it or in

any calculation in any division multiplication I am bound to do some round off error. So,

whenever I have large number of points each I am doing a round off error total round off

error  increases.  So,  if  we see  discretization  error  reduces  with  increased  increase  in

number of points, round off error increases with increase in number of points.
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So, we go to an interesting situation that is totally if I write total error in as a function

grid spacing or total  error as a function of number of grid points as grid points will

increase grid spacing will reduce and vice versa. As grid spacing as delta x grid spacing

increases,  the  discretization  error  should  also  increase;  however,  the  round off  error

reduces. 

Therefore, we will see and as grids up to a certain point out the with grid spacing error is

reducing and then it is increasing or the vice versa. If we come from this side as we are

reducing grid spacing, the error is reducing up to certain point. And then as the number

of points have increased grid spacing is very low, but finally, the error is  increasing

because one error is reduced discretization error is reduced, but round off error has been

increased.

So, there is an optimal regime in which these errors kind of cancel each other and we

will  see  a  flatness  in  the  curve  there  is  a  minima  of  error.  We call  this  is  a  grid

independent solution, because if we change the grid size slightly, there will be no change

in error at this part. And this is the optimum grid spacing in which the solver should

work to get the most accurate solution and this is what we called as the preferred grid

size.

So, any solver any numerical method we are using to solve a physical problem like a

Laplace equation coming from heat conduction equation or a Poisson equation coming



from  mass  conservation  and  pressure  balance  equation  in  fluid  flow,  any  of  these

equations or a stress strain relationship in a solid mechanics problem is a differential

equation which is converted to a difference equation. 

And when we are and then we were using a matrix method to solve this equation, but

when we are doing this conversion from difference to difference equation differential to

difference equations and using the matrix method we are obviously making some error

that is evident that there is some error. This error has to be list or we have to in the p in

the preferred gird size for the for right solution.
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And that is why it is very important to have a validation and verification; Validation is

comparing your numerical result with available experimental or analytical result and see

that  these  differences  are  nominal.  And  verification  is  that  actually  looking  into  the

accuracy of the code reduce the grid points see what is the difference from the analytical

or experimental solution.

And now increase the number of grid points, calculate the error. And see whether the

error reduces following a second order or first order whatever is the accuracy preferred

slope following that  particular  nature.  So,  these two are very important  things  when

doing  a  numerical  solution  of  a  physical  problem.  Without  this  we  cannot  have

confidence over the solution method because we always know when we are converting

the differential equations to the difference equation or to the matrix equation and solving



it, we are making some error. This error has to be within a confidence level, so that the

final solution is acceptable ok.

Next  class,  we will  see  how this  matrix  equation  which  is  coming  from a  physical

problem like a Poisson equation or Laplace equations transform difference equation can

be efficiently solved.

Thanks.


