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Now, let us start the geometry of LPP and it is graphical solution. Geometrically how

LPP  looks  like  what  objective  function  actually  looks  like  geometrically  or  the

constraints, and what about the feasible solution all this things let us discuss first. And

then  we will  go  to  the  graphical  solution  of  LPP and we will  only  go  for  solution

graphical solution of LPP for 2 variables only because 3 variable or more variables it

becomes  difficult  to  visualization.  First  let  us  go with certain  definitions  one is  line

segment suppose you have 2 points x 1 like this way. X n 1 and x 2 equals x 1 2 like this

way x n 2. You have 2 points in r n x n x 1 and x 2. Then the line segment joining this 2

points x 1 x 2, is the collection of points x is the collection of points x which can be

written as x 1 x 2 x n, such that x equals lambda x 1 plus 1 minus lambda into x 2, where

lambda lies between 0 to 1.

So, for any 2 points x 1 and x 2 in r n that is if you have x 1 1 up to x n 1 and x 2 equals

x 1 to up to x n 2 in r n. In that case the line segment joining this x 1 and x 2 is a

collection of points of the form x where x is x 1 to x n which will satisfy the equation x



equals lambda x 1 plus 1 minus lambda into x 2 lambda lies between 0 to 1. Hyperplane,

next one is hyperplane. You have a point x which is nothing but x 1 x 2 x n. If this points

satisfies this one C 1 x 1 plus C 2 x 2 plus C n x n equals z. Then this line this equation

represents one hyperplane for a given values of cis and j please note this one, for a given

values of cis and z this equation will define one hyperplane. Or in other sense basically

whenever I am supplying some values of C 1 C 2 C n and the value of z,  then the

objective function is representing one hyperplane and in 2 dimension how it looks like

then in it will look like a line and that we will see whenever we are trying to find out the

solution of the graphical solution of the problem of 2 variables.

You may have the parallel hyperplane also, that is say C 1 x equals z 1 and C 2 x equals z

2. This 2 planes will be parallel sorry, this 2 hyperplanes will be parallel if C 1 equals

lambda C 2; obviously, lambda is not equals to 0. Or n other sense 2 hyper planes will be

parallel if they have same unit normal. If they have same unit normal C 1 by C 2 equals

some constant.
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Next one is closed and open half space, closed and open half space. I am denoting it like

this means open. So, x such that C x greater than z and x such that C x less than z this we

are calling as open half space. And similarly closed will be x such that C x greater than

equals z. So, you can understand the difference and x, such that C x less than equals z



this we are calling is closed. Just like open set and closed set you are including this point

or not. Like this way we are defining it as a open or closed half space.

The next definition is convex polyhedron, you have a finite number of please note this

one.  Finite  number  of  linearly  independent  vectors.  If  you  have  a  finite  number  of

linearly independent vector, then convex combination of all these linearly independent

vectors  is  known as  a  convex  polyhedral.  So,  if  I  have  a  finite  number  of  linearly

independent vectors, and if I take the convex combination of them then they will form a

convex polyhedron. Mathematically if I have to say if x 1 x 2 say and x n, they are

linearly independent vectors. If these are linearly independent vectors, then the set x such

that x equals summation i equals 1 to n lambda I x I where lambda I greater than equals

0, and sum of all these lambda is equals to 1 is known as one convex polyhedron.

So, if you have the linearly independent set of vectors x 1 x 2 x n and if we can find a set

x, such that x equals summation i equals 1 to n lambda I x I lambda I greater than equals

0, and summation of all this scalars lambda i equals to 1, this will form one convex

polyhedron.
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So now you see the geometry of LPP. Here what is happening? If you see number one

you have a constraint. Each constraint defines one half space, half space means it may be

open up space or it may be closed up space. It may open it may be open up space or it

may be closed up space.



So, each constraint is defined as a half space. And feasible region already we have talked

about feasible region, this feasible region is nothing but the convex polyhedron. Your

feasible region is nothing but the convex polyhedron. Or it is defined as the intersection

of the half spaces. Your half spaces are nothing but the constraints feasible region is the

region which is bounded by these constraints, and this feasible region is nothing but a

convex polyhedron. And the last one is you have the objective function. Your objective

function is nothing but a hyperplane. So now, see your objective function is a hyperplane

of  the form C x equals  z,  where you will  supply the values  of  C and z.  Your each

constraint  will  declare  or  will  be  treated  as  a  half  space,  intersection  of  all  these

constraints  or half  spaces will form a feasible region which is nothing but the linear

convex combination of linearly independent  vectors,  which we are calling as convex

basically convex polyhedron.

Now, what about this one? Your value of this one objective function can be written as z

equals C transpose x equals say k. If very simple form if I have to write down. Suppose

you have a something like this, and you have another one which is cutting something like

this.  If  I  draw a line like this  way, which represents  C transpose x equals k.  Say C

transpose x equals k. So, what is k k basically the distance of the origin on this line that

is this one. K is nothing but the distance from origin to this line.

So, if I move this line away from origin I will go towards this side. So, for maximization

problems I can move this hyperplane for the objective function, away from the origin and

if I have to find out the minimization of a problem. This line will come closer to our

origin. Next one is the let me explain from here itself. Extreme point already we have

discussed. Extreme point is basically nothing but the intersection of the 2 boundary lines.

So, here if you see, if this is one constant we have defined using equality sign, and this is

another constant. So, I am writing this is as a constant C 1 this one as a constant C 2. And

since the variables are non negative. So, I have to take this axis and this axis on the

positive sign. Then your feasible region is basically nothing but this. And what are the

extreme points? Extreme points will be the bound intersection of the boundaries of this 4

lines. So, intersection you can obtain at O, this you can obtain at this point A you can

obtain at this point B and also you can obtain at this point C.



So, your extreme points I can say that this will be O A B and C, these are the extreme

points of your problem.
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Which we have discussed earlier also. This one also I think, I have discussed the basic

solution what is the basic solution. If you have a system of simultaneous equation A x

equals b where a equals a i j this is m cross n matrix and m is less than n if I assume that

rank of a is equals to A. Then I can form a matrix B which will be of the m cross m. That

is I will take only m linearly independent column vectors and I can form a matrix B.

Whereas, all other n minus m variables; that means, if I have the rows sorry columns one

2 like this way m and then, again m plus 1 like this way up to n.

So, these are the variables basic variables, and these are the non basic variables. So, these

are linearly independent  column vectors,  from that  I  have formed matrix B. And the

remaining n minus m variables if I make it equals to 0 which I have shown earlier. Then

the solution obtained is known as basic solution. In the last class I think we have given

one example also. So, you can go through that part also. Till there comes basic feasible

solution.  So,  you  have  done  earlier  the  feasible  solution.  We have  done  the  basic

solution,  should  now come to  the  basic  feasible  solution.  If  you  remember  feasible

solution  is  the  solution  which  satisfies  the  constraints.  So,  a  feasible  solution  to  a

problem to and LPP. If it  is also a basic solution,  then we call  it  as a basic feasible



solution. So, if a solution is feasible solution of an LPP, and if it is also a basic solution

in that case we tell that this is a basic feasible solution.
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Now, let us go through quickly some theories which is important, which we have to use

afterwards. First one is fundamental theorem of LPP. What it says? If the feasible region

of an LPP is convex polyhedron, please note this  if the feasible region of an LPP is

convex  polyhedron.  Already  we  have  told  the  feasible  region  will  form the  convex

polyhedron.  Then there  exits  an optimal  solution  to  the LPP. And at  least  one basic

feasible solution is optimal. So, in other sense this theorem says that if I can show that

feasible region of the LPP is convex polyhedron, in that case you will obtain optimal

solution and at least one of the basic feasible solution will be optimum.

If the feasible region is non empty and convex, then there exit extreme points within the

feasible region, and optimum will occur at some extreme point of the feasible region.

Already we have defined the feasible region, we have define the extreme point. So now,

what  we  are  saying  that  if  the  feasible  region  is  nonempty  and  convex.  Then  the

extremum point one of the extremum point will give you the optimum value. So that

means, inside the feasible region I do not have to check for all points, but I will check

only for the extreme points, and at the extreme points I will find out the value of the

objective function. And from the value of the objective function only we can tell which

extreme point is giving me the optimum value.



So, please note this one if the feasible region of a LPP is convex polyhedron. Then it

ensures that at least one of the basic feasible solution will give you the optimal value.

And from the feasible region you can obtain the optimum value only at the extremum

points. So, which makes your life simpler, and this theory we will use afterwords to find

out very large LPP problems.
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So, this is one theories. Some other theories related theories are also there the set of

number. One the set of all feasible solutions of a LPP is a convex set.

So, this proves that if I have formulated one linear programming problem, where the

objective function and constants are linear. And they satisfy the other assumptions of

LPP, then the feasible solutions will form a convex set. Similarly next theorem says the

objective function of a LPP assumes it  is optimum value at the extreme point of the

convex set of feasible solution. So, there is mathematical proof is there what I told you

just  now  that  the  objective  function  of  an  LPP assumes  it  is  optimum  only  at  the

extremum point or extreme point of the feasible region.

The third theory says that, a basic feasible solution to LPP corresponds to an extreme

point of the convex set of feasible solution and the converse is also true. So, basically

these 2 theorems are we are saying if one is if only if has been proved by the second part.

That the feasible solution to LPP corresponds to an extreme point of the convex set of

feasible  solutions.  And  the  opposite  one  is  true.  The  last  theorem says  if  objective



function  assumes  it  is  optimum value  at  more  than  one  extreme  point.  If  objective

function assumes it is optimum value at more than one extreme point, then the points

then every convex combination of these extreme points gives the optimum value. Every

we are  saying that  every  convex  combination  of  these  extreme  points  also  give  the

optimum value of the objective function. Or in other sense if I have to say I got optimum

point at this point and at these value; that means, at 2 points I am getting the optimum

value  same  optimum  value  of  the  objective  function  any  convex  combination;  that

means,  if  I  join  this  point  at  each  point  of  this  line,  also the  value  of  the objective

function will be same and it will be optimum. That is there will be multiple solutions for

that particular problem.

So, this theories are useful for us.
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The next one is graphical solution. The graphical solution of an LPP. As I told you earlier

we will  go  for  the  LPP consisting  of  2  variables  only. Because  if  we go beyond 2

variables  visualization  will  not  be  proper.  So,  for  finding  the  solution  of  an  LPP

graphically we will use the objective function which consist of 2 variables only. There

are 2 methods basically one we call as the search approach and another one we call at the

ISO profit or ISO cost function. So, 2 methods or 2 approaches we will use one is search

approach and the other one is the ISO profit or ISO cost approach.
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So, first let us come to the search approach, at first what we will do we will discuss all

these approaches, and then we will see how to find out the solution. The first one is

convert each equality constraint into equality constraint and draw the line. Because in the

LPP you have seen the constraint may be equality may be inequality that is constraint

may be greater than equals or less than equals. So, you have to treat all the inequality

constraint  as  equality. So,  that  you can  draw a  corresponding line  to  that  particular

constraint. Intersection of all the lines will give you the feasible region, as we have told

intersection of this hyper planes of this open up spaces half spaces we will give you the

feasible region.

So, whenever I am doing the intersection of all this lines it will give me the feasible.

Region above feasible region now may be bounded may not be bounded. Compute the

coordinates of all extreme points of the feasible region. So, second step is basically you

have to find out the extreme points of the feasible region. Number 3 is find the value of

the objective function at each extreme point. And number 4 is select the extreme point

which optimizes the value of the objective function. So, I think the procedure is quiet

simple the procedure says that  if you have the inequality  constraint  in your problem

make it equality constraint, and once I am making it equality constraint after that you

draw the corresponding line.  Like this way you will  get for each constraint  one line

intersection of all this lines will give you the feasible region.



From the feasible region now compute 2 things one is the extreme points of the feasible

region, next will be at each extreme point find the value of the objective function. And

the extreme point which gives the optimum value of the objective function that will be

your require solution. So, this is the search approach whereas, the other one that is ISO

profit which we call as maximum or ISO cost which we call as minimum, those approach

that approach is the other one almost similar, But there is a difference is there. Here point

number 1 and point number 2 are same as we have discussed in the search approach.
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Now, they  are  same  means  we  want  to  say  that,  first  you  make  all  the  inequality

constraints into equality constraint. And once I am making it into equality constraint I am

drawing the line. So, for each constraint I will get a line and intersection of those lines

will give you the feasible region. And from the feasible region you can calculate the

extreme points also like others. Here number 3 is the important one choose a convenient

profit line of the objective function. So, that it falls within the feasible region. The line

takes the form C t x equals k. Here we are saying you take a line of the form C transpose

x equals k, k belongs to some real number. And using these you choose an arbitrary

profit line of the objective function. And that line should fall inside the feasible region.

Now, move these ISO profit line parallel to itself away from the origin; that means, as I

told you if you remember this thing. We were talking about this one; if I have this as I

was mentioning, if it is something like this your feasible region is this one here and here.



I may draw any line like this by using C transpose A x equals k. Once I am doing the C

transpose x equals to k. Then since it is a profit function move this line away so that at

some place may be it will be like this, I will be finding the solution. So, we are saying

that move these ISO profit line parallel to itself away from origin. And this away part

will  be towards origin.  This can be towards origin.  If  the problem is a minimization

problem; that means, I have to minimize the distance from origin to that line and I have

to maximize the distance of that line from origin if it is a profit function. And the last one

is  identify  the  optimum solution  as  the  coordinates  of  the  extreme point  of  feasible

region touched by the highest possible ISO profit line.

So, this I will explain with an example. So, I think for finding the solution of an LPP

graphically we will go through both search approach as well as the ISO profit or ISO

cost  approach.  Same  problem  we  will  try  to  solve  in  both  ways.  So,  that  you  can

understand how it works, but please note this thing again that whenever we are trying to

find out the solution of one LPP graphically we will use the objective function consisting

of  2  variables  only.  Not  more  than  2  variables  because  visualization  of  3  or  more

variables becomes difficult. So, in the next class we will do some examples of this and

then we will proceed to the solution of LPP using simplest method.


