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Lecture – 19
Modeling transport of particles inside capillaries

Hello! In the previous lectures we discussed about composite porous channels where we have

a  partially  filled  porous  coating  and  then  partially  filled  free  flow  and  then  coupling

conditions. And also we discussed about recent interface condition that is called stress jump

condition and its role. So in the previous lectures we discussed mostly rectangular geometries

of the composite channels. 

So while these have applications for example one of the important applications is flow inside

glycocalyx okay endothelium and glycocalyx etc.  So what is  endothelium? These are the

vessels where so there is a lumen inside and then porous layer. So typically they are varying

cross-section but the best initial approximations. For example cylindrical completely regular

circular shape cylindrical. 

And then suppose somebody would like to further study planar cross-sections so then no one

would  go  for  a  rectangular.  So  in  that  sense  of  the  previous  lecture  we discussed  about

composite porous channels. So in this lecture we are going to discuss about more improved

model like cylindrical composite porous channel okay. 
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So you will see this has a lot of applications. Because viscous drops in pipes so they also has

a similar configuration, then migration of blood cells inside micro vessels and gas bubble

inside channels. So these are all examples found where one can model transport of micro

particles passing through pipe okay. But it is not very obvious to model these you will see

why at the end of this lecture. 

So to start with we are not considering any micro particle so we just consider a composite

pipe and then try to discuss okay. 

(Refer Slide Time: 02:47)

So for example one of the application is blood transport inside capillaries okay. Typically if

somebody would like to model this they have the consider various parameters. For example

one  has  to  treat  blood  as  a  suspension  of  red  blood  cells,  white  blood  cells  which  are

leukocytes.  Then if you see the common literature else that blood these considered as a non-

Newtonian okay. 

But plasma is incompressible Newtonian okay. And you will ask question so whether we

have the model as a non-Newtonian or Newtonian. So typically in the capillaries it can be

approximated as Newtonian okay. So before we model particle migration we would like to

focus  on  capillary  flow kind  of  okay.  So  when  you  say  blood  transport  what  are  these

leukocytes.

And what could be the order of their size so that they pass through within the lumen. If you

see minimum diameter  of a cylindrical  tube that permits a normal red blood cell  to pass



through it intact is 2.8 micron then leukocytes are generally spherical with a mean diameter

of 6 to 8 microns okay. So this is so keeping sphericity, minimum is this so they allow little

larger range. 
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So this is a application I was referring flow inside vascular endothelium. So if you see so

these are the porous coating and this is the lumen okay. So this is vasculature and then these

are endothelial cells okay. So these are completely deformable porous okay. But throughout

these lectures we are considering porous media as a rigid matrix okay. So what is here shown

is lumen and the glycocalyx. What is glycocalyx? 

Layer of membrane-bound macromolecules and absorbed plasma proteins which are this is

the coating porous coating, cylindrical configuration. 
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So we would like to approximate this as I indicated so approximation to flow inside vascular

endothelium. So you have a cylindrical configuration. this is the porous coating and then this

is the lumen okay. So if you see one cross-section view so the outer one is a of radius capital

R and then inner one is of radius of Lamda R. So Lamda is constant so we can control the

layer thickness with the parameter Lamda okay. 
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So within the fluid region we have stokes equations. So this is equation of continuity and

momentum equation as usual. So Mu is the dynamic viscosity of the fluid. So this is the inner

region. 
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Then in the analyst region which is the porous region so we have again equation of continuity

then we have Brinkman equations with so there should not be so with the pressure forces and

then the corresponding effect of viscosity and then Darcy the damping term okay. So this is a

Brinkman equation okay. So this dot should not be there, gradient. 
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So then assumptions and a simplified form so we are assuming a unidirectional okay, so

therefore,  flow  is  a  fluid  flow  and  then  correspondingly  porous  flow like  this  with  the

corresponding superscripts. Then we assume flow is axisymmetric okay. 
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So correspondingly  we have seen earlier  so due to  axisymmetry  and unidirectional  from

conservation of mass we get the velocity is function of r alone okay. And the corresponding

momentum equation.  So these two indicates the pressure is  function of z and we have z

momentum equation okay. So this is already I have indicated. So similar thing one can have

in the porous region. 
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So equation of continuity indicates this then r and Theta z components. So here we have the

corresponding permeability playing additional resistance and then we have effect of viscosity.

As usual for the current study we assume that effective viscosity is equals to viscosity. So

now before proceeding we have to fix interface conditions. 



So here I would like to mention so even though in the previous lectures we have introduced

the  so-called  stress  jump  condition,  it  is  just  to  make  you  understand  that  recent

developments  etc.  But for simple cases and then for keeping the algebra simple one can

consider continuity of stresses so that the algebra is simple. 

So those who are interested to see the impact of stress jump coefficient one can always take

the corresponding stress jump condition and then analyze the results okay. So otherwise we

are restricting to continue for tangential stress okay in this problem okay. 
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So simplified form of governing equations we have the corresponding z momentum equation

in fluid region and the corresponding z momentum equation in the porous region okay. 
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So the assumption is pressure is the same okay in both the region. 
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Now boundary conditions so the outer wall is impermeable therefore the porous velocity is

zero no slip. Then the regularity condition at r = 0 therefore uf is a finite at r = 0 okay. 

(Refer Slide Time: 09:38)

Now interface conditions, so as I indicated we use the continuity of stress and velocity. So

therefore, at the interface your continuity of velocity and the continuity of stress okay. But we

assume effective viscosity equals to viscosity. 
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So the mean velocity is a defined by this because the fluid is ranging from 0 to Lamda R and

then porous is Lamda R to R and corresponding area averaging we are doing okay. 
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So then we introduce a non-dimensionalization. There is the radius of the tube is used for

non-dimensionalizing  the  length  scales  for  both  R  and  z  as  well  and  once  we  non-

dimensionalize so pressure is also as I indicated both r equals to a constant. So then non-

dimensionalized momentum equation in the fluid region and in the porous region. 

So we have seen in the previous lectures this is the damping term due to the permeability

which is a alpha square is 0 one over Darcy number where Darcy number is this okay. So if

permeability is a small Darcy number is small if permeability is large Darcy number is large

okay. So non-dimensionalized boundary conditions and interface conditions. 



So we have a seen for the clear flow solution so similar using similar method one can easily

compute the solution. So this is an expression for the mean velocity so now if we find the

general solution fluid reason we get this and the porous region we get this where these are the

modified Bessel functions okay. So now we have regularity condition, therefore, in the lumen

we have regularity condition at r equal to 0. So therefore, we expect that this will be 0. 

(Refer Slide Time: 12:00)

So correspondingly if you use the boundary conditions and interface conditions we get the

corresponding solution and the volume flux balance can be used to get the pressure okay. So

solution is obtained. So then we use Mapple or MATLAB to plot this okay.
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So you see we have shown with some nice editing so that you understand better. So we are

showing only  the  symmetry.  So for  the porous portion  you have we have  fixed  specific

Lambda okay. So it is a luminous upto 0.5 and then from 0.5 to 1 you have porous okay. So

as you can see in the figure (a) for a different Darcy number we are showing these curves and

the direction is given. So it is increasing from 10 power -3 to 1. 

So  let  us  consider  10  power  -3.  That  means  Darcy  number  is  very  low.  So  since  the

permeability is very low you expect a very less velocities because a very small amount of

fluid can percolate into this region. But you can see the total  volume flux is balanced so

therefore whatever is lost here;  lost in a sense because it is very minimal;  that has to be

adjusted in the free flow region. So that is why the velocities are more here okay.

Now suppose you increase the Darcy number slightly so then the velocity  in the porous

region is increased and correspondingly in the fluid region it is a reduced. Further if you so

that what we are getting. Then this is a, almost large Darcy okay. So almost this is a limit of

fully clear flow region. So the total volume flux is a getting adjusted like this therefore, the

velocity is getting adjusted like this okay. So this is indicating what kind of protein structure

in the in the glycocalyx.

So  corresponding  to  the  protein  structure  we  can  estimate  the  permeability  range  and

depending on the permeability range we can get the corresponding Darcy number and then

we can study what kind of volume flux is getting accumulated within the within the porous

layer. And if there are high volume flux then one can analyze what kind of tissue deformation

happens. Of course this is approximate model with rigid porous matrix.  But in case of a

deformed porous matrix.

So these kind of estimates can be obtained okay. So this gives some correlation with the

tissue lining and then the corresponding velocity profiles etc. So for example if somebody has

to estimate some drugs and then the corresponding velocity to be controlled okay, so then we

have to study the glycocalyx parameters like it is rigidity and then permeability etc. And then

correspondingly one can get some estimate on the velocity of the drug. So these are some

applications.



So now let us see the limiting case as always to validate one has to show some limiting cases.

So this is for a large Darcy number Lambda 1 okay. That means a fully clear flow so it is

agreeing with the clear float channel okay. So this is a Hagen Poiseuille. 
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So that is the inference we are making increasing Darcy number increases the velocity inside

the porous coating okay and opposite  behaviour  is  observed in  the fluid region to  retain

constant volume flux. What I meant, increasing the Darcy number increases the velocity in

the porous region. Opposite behaviour is observed in the fluid region because for this it is

more increase in Darcy number, velocity is reduced in the fluid region. 

That is what we want. Then for Lambda 1 velocity is in line with the Hagen Poiseuille flow.

This is what we have seen okay. So this is an approximation to investigate particle migration

in a in a capillary okay. So in order to get some understanding about a similar problem we are

going to discuss now some discussion about how one can model particle migration in a pipe

okay. 

So the corresponding algebra is a little involved so it cannot be just done in a lecture. So but

the concept can be explained and what are the difficulties involved in modelling this okay. 
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So we are interested in particle migration. 

(Refer Slide Time: 18:09)

So consider a capillary okay, a tube, so we fix r and z. Now we are interested in modelling

particle migration right. So you take a sphere so if you consider spear in order to satisfy

boundary condition on the sphere we require spherical coordinate system to handle the sphere

okay. So which means if you take any point with respect to spherical coordinate system. 

This is the point where as with respect to this cylinder this is z axis and then this is r axis

okay.  So  that  means  there  is  a  interaction  of  the  coordinate  system okay.  So  it  is  very

straightforward if somebody is concentrating on boundary conditions, suppose you are in a

rectangular system so then we can reach plates okay. 



Suppose  you  are  in  cylindrical  coordinate  system  then  we  can  reach  the  corresponding

surface with r equal to constant and then axis with a z equal to constant plane okay. So if you

want to represent say sphere surface r equal to constant using Cartesian, so it will be difficult

okay.  So  that  is  what  so  depending  on  the  problem  we  have  to  fix  the  corresponding

coordinate systems okay. 

So depending on the physical configuration. So here the difficulty is you have a spherical

particle  so  where  you have  the  handle  the  spherical  coordinate  system.  But  you  have  a

cylinder that you have to use a cylindrical coordinate system. But then sphere is travelling

inside a tube. So therefore you have an interaction of the coordinate system. So how this can

be handled? So that is the task okay.

So as an indicator tube is cylindrical coordinate system and particle that is a sphere is the

spiritual coordinate system. But considering Stokes flow which is linear the equations are

linear. So one can use some superposition principle. 

(Refer Slide Time: 20:59)

So what we do is we consider axisymmetry and introduce stream function okay. Then once

we introduce stream function the total stream function is decomposed into two parts, where

this takes wall effects into account and this takes sphere effect. That means we are trying to

solve for Psi w using cylindrical coordinate systems in the absence of sphere okay. 

So just like it assuming axisymmetry of course we are assuming axisymmetry so then we can

introduce stream function. So once we introduce stream function we are considering Psi in



the absence of sphere. Just a pipe flow satisfying no slip okay. So wall efforts means no

sphere okay. Then no slip on r = a. So this is corresponding to Psi w. And sphere what we are

considering is no wall no slip on r = a okay. 

So these two are independent problems. So why we could do this and why this is justified?

Because the problem is linear okay. So this linearity is allowing us to do this superposition.

So we solve these two problems independently then combine Psi okay. So that is Psi w is

solution for the flow inside circular tube with impermeable walls in absence of sphere. So

then this can be a function of rz. 

Then Psi s will be solution and then this will be function of r. So here when I say no sphere

no slip on r equal to a. No wall no slip on r equal to a. So therefore, first compute the solution

in sphere so this. So no sphere case will be Psi w will be Psi w of rz in cylindrical. And no

wall means Psi s will be Psi s in r and Theta. Because axisymmetry for cylindrical is this and

axis symmetry for spherical is this okay. 

So we have computed without sphere okay. So just the solution but we have not yet forced it.

Then without the walls just with sphere we have computed this solution. 
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So once you compute then the resultant Psi will be of the following form rz + sphere r Theta

okay. But then what is the configuration we have? So the configuration that we have is okay.

So for the combined since individual we expect that but we have to solve the impact of the



particle. So we do not enforce this on individual stream function okay. We do not enforce no

slip we do not enforce no slip on the sphere on individual solutions. 

We compute the general solution then superpose Psi, then we have to force no slip and no

slip. So that means we are forcing no slip on Psi resultant Psi okay. So once you force so we

can determine the corresponding arbiter  coefficient  involving this  okay. So this  is a very

unique problem in that sense there are alternate methods for this. For example one can use

say bi-polar coordinate system. 

And then the bi-polar coordinate systems are separable in a linear case okay. So therefore,

one can use but we are exploiting the linearity structure of the problem and then getting two

individual components superpose and force the boundary conditions on the cylinder as well

as of sphere on the combined stream function okay. So this approach can be done. 
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So that is what I said zero velocity and zero stress on the surface of the sphere, zero velocity

on the surface of the tube and the complication is interaction of the coordinate systems okay.

So  this  similar  technique  is  used  by  these  authors  in  a  different  context.  So  they  were

modelling porous sphere translating in a circular cylinder okay. So they have used this. So we

thought we will just make you understand how particle migration can be modelled inside a

tube. 

As I indicated the algebra is very much involved because you have to compute individual

stream functions and then forces and surface conditions. So one can do it but not because if



you do it in a lecture will be very routine, lengthy algebra okay. So I am sure you get some

idea about particle migration and then overall how porous tubes and porous composite porous

channels can be handled okay. 

So maybe in the next lecture we discussed some applications so that you get to know various

situations where whatever we have learnt so far can be applied okay. Thank you! 


