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Lecture – 14
Migration of viscous drop under Marangoni effects

Hello! So in the last lecture we discussed about viscous flow past a spherical drop. But if you

recall  we have assumed that the surface tension is a constant.  So in that case we had an

ambient flow and then flow is driven by this ambient flow and you have a spherical drop. So

now we consider that surface tension depends on some activity. Say in this example, depends

on the temperature. 

So in which case you have ambient flow plus an additional activity due to the surface tension

variation. Hence, the corresponding tangential stress balance play a role okay. So let us have

a look at this. 
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If you consider the surface tension it may depend on any physical quantity likes temperature

or concentration. And it is proven that typically in a linearized approximation, surface tension

depends on temperature or concentration linearly like this, where Alpha is constant, Beta is

constant and T is the temperature okay. 

So  such  effects  where  surface  tension  varies  with  temperature  or  concentration  and  the

corresponding radiant induces tangential force, so that is called a Marangoni effect okay. So



the applications of various drops and bubbles under Marangoni effects are enormous because

in most of the liquid propelling systems you have high temperatures and you have a lot of

bubbles and drops are formed. 

So  therefore,  migration  of  those  under  such  environment  is  a  very  much  essential  to

understand okay. So today we are going to discuss where with the assumption that surface

tension depends linearly on the temperature okay. 
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And additional assumptions flow is steady, incompressible and viscous, axisymmetric. Two

fluids are immiscible where we have a liquid drop of viscosity Mu i in a fluid of this costume

Mu e. Interfacial tension depends on the temperature and steady conduction is considered.

When we are assuming interfacial tension depends on temperature, so there should be the

corresponding temperature problem. 

So here a steady conduction is considered so we will spend a few minutes on this okay before

we solve the problem. 
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So the scenario is as follows; you have a drop. This is similar to the ambient flow case. You

have an ambient flow at far field. In addition if you see you have an ambient temperature and

you have the corresponding temperature interior that is Ti and corresponding temperature

exterior Te okay. So hence, due to the additional consideration of temperature, we expect that

surface tension depends on the temperature and hence the migration of the drop should be

influenced.

So our aim is to consider what would be the corresponding influence of this temperature

considerations okay. 
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So to quickly recall,  the boundary conditions are the normal velocities are 0 and then the

tangential velocity continuity and the corresponding tangential stress is balanced by surface



gradient of the surface tension okay. So in this case we assume that Sigma is function of

temperature. In the last lecture we can start Sigma is a constant okay. So that is the major

difference.
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So we go for Stokes equations interior and exterior. So this is a very straightforward similar

to the previous lecture. Addition is we are considering steady heat conduction okay. So before

we come to the heat conduction equation.
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So we have a drop then what we are saying you have a uniform far field and then you have a

party temperature. This is so when we have the fluid case we are using the corresponding

governing equations which are nothing but balance of linear momentum and conservation of



mass. That is what we have used okay. So that is we are using for both exterior and interior

we are using. So this is conservation of mass and linear momentum balance. 

Now once we have additional temperature naturally the concept of energy comes in. So one

has to consider the corresponding energy balance because you have a temperature set in so

you  get  the  corresponding  energy  transmission  takes  place.  So  one  has  to  consider  the

corresponding energy balance okay.

So now if  you consider  the Fourier  law of  conduction.  So we have typically  this  is  the

corresponding thermal conductivity and then this is the temperature gradient. Then the flux

will be so this is and if assume k is constant we get the okay times k okay. So this is the

conduction  flux  and  then  by  virtue  of  the  total  material  transportation,  the  change  of

temperature with respect to the convection is this. 

Now if we assume there are some sources or sinks, say you have some Q which is a function

of T. So now if we balance what we get is. So this is the basic energy balance okay. Now for

the present case we are assuming steady conduction that means okay. So we are ignoring

convection under the flow is steady and there are no sources and sinks so this is the simplest

scenario. 

Hence we have Laplacian with respect to temperature both exterior and interior. So once we

have  the  corresponding  steady  heat  conduction  we  need  the  corresponding  boundary

conditions on the interface. 
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So the natural boundary conditions are continuity of the temperature and the continuity of the

corresponding flux where Kappa is the corresponding ratio of thermal conductivities okay. So

now we  are  assuming  the  axis  symmetric  flow.  Therefore,  you  are  seeing  only  r  Theta

dependency. So there is no Phi dependency and hence we have to get a separable solution of

Laplacian in only axisymmetry case. 

And we have the corresponding boundedness condition and far-field. So we are keeping the

case very simple with the assumption that you have a far-field ambient temperature given as r

Cos Theta. It is a uniform you can say uniform temperature okay. 
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So now for axisymmetric case the solution for the Laplacian for interior and exterior can be

written down very easily. So you can see the coefficients for exterior we are using this and for



interior with primes and these are the Legendre polynomials okay. Now we have to determine

these coefficients by using the boundedness condition in the interior, far field condition for

the exterior and matching the corresponding temperature and flux okay. 

So if we apply the far field condition so we obtain so this maybe we can discuss a bit. 
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So we have Te which so this is Pn of Cos Theta. This should go like r Cos Theta okay. So n

equal to 0 you get 1 / r so as r goes to 0 r goes to infinity so this term anyway is going to

vanish okay. Because from n equal to 0 onwards you are getting 1 / r terms. n equal to 1 1/r

power 2 . So as r goes to infinity this goes to 0 so n equal to 0 just a constant okay. So we are

considering n equal to 1 case which is rP1 which is exactly this. 

So therefore, if you match what we are getting is a1 = 1 and an is 0 for all n not equals to 1

okay. 
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So a 0 is still you can have but a constant is not contributing. So we can absorb in T. Then the

reduced  temperature  external  is  given  by this.  Strictly  speaking  we could  have  added  a

constant but that can be absorbed. So there is no functional dependency with respect to r and

Theta in the constant okay. Now for the interior finiteness condition bn prime is 0 because if

you see from n equal to 0 onwards this produces singularity at r = 0. 

So since we are assuming no source at sink so bn prime must be 0. That is what we have

written, hence, the reduced temperature field interior is this. So at this stage we are left with

two arbitrary constants bn and n prime and we have two conditions given by continuity of

temperature, continuity of the flux. So we enforce these conditions. 
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So first condition if you enforce continuity of temperature we get this relation then if you

enforce continuity of flux we get this.  If you see we are indicating n = 1 case explicitly

because this is the non-homogeneous system which is going to give a non-trivial solution. If

you see for the remaining for n not = 1 case you have a homogeneous system which produces

trivial solution. 

This is because of the ambient uniform flow. Had it been some other flow you would have

got the corresponding modes okay. For example let us say your flow is, say some Cos 2 Theta

then correspondingly n = 2 would have contributed. Since we are having n =1, so n = 1 mode

only contributing the remaining modes are 0 okay. 
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So this is this will give so I have listed the homogeneous system will produce trivial solution

then  the  non-homogeneous  system  corresponding  to  n  =  1  produces  the  corresponding

solution. So this is very easy to check okay. So once we have the solution at hand we have the

complete  field.  So  this  is  exterior  and  interior  and  naturally  this  is  in  terms  of  the

corresponding ratio of the thermal conductivities okay. 

So now we have the solution at hand the scenario is exactly similar to what we have done for

the for the constant surface tension case. Just we have to balance the forces okay. Balance the

boundary conditions.  But additional is when we are balancing the tangential stress we have

to consider the gradient of the temperature okay. So that what we are going to do.
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So since we have access symmetry so we have the corresponding stream function. So since

we have done it so I am not spending much on this because it is a almost a third time we are

recalling. And the boundary conditions, so these are pretty much straightforward. The notable

one is jump in the tangential stresses where you get this is due to the surface gradient of the

surface tension okay.

 And non-dimensionalization has taken place because we have the right hand side we have a

sigma dot t and here we have the corresponding Tow e – Tow i this. But our assumption is

Sigma is Alpha – BetaT okay. So we non-dimensionalize this. Once we non-dimensionalize

we get a non-dimensional number. You can see here we are getting the corresponding non-

dimensional number which is called Marangoni number okay.

So this is the competition between the corresponding conduction that is the temperature to the

corresponding conversion okay. So this is the temperature gradient. 
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Now the additional condition, this is interior flow is bounded and far field condition okay. So

we are exactly in the same scenario as the previous case of viscous flow past straight drop.

Additional thing is the temperature will keep you the corresponding stresses with a jump

okay and the jump is quantified as gradient of the temperature okay. So let us see how the

corresponding jump is playing a role. 

So as before this is the general solution for n equal to 1 case. Then applying far-field these

arguments we have very much discussed. So similar arguments applying far-field we get this.

Then we consider the corresponding stress balance we are not doing okay. So we consider

these conditions; Ur 0 that will give you a Theta derivative okay and U Theta is continuous. 

So this is normal exterior 0, normal velocity, interior this should be i and this is a jump. I put

it as jump so which is nothing but. 
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So this can be written as so this is a jump okay. Many times this notation is used. So that is

what we are using. So leaving the stress balance we have used the remaining three and then

determine three coefficients in terms of one of the coefficients that is B1 because we had in

the solution four coefficients. So using three boundary conditions we determine in terms of

one of the coefficients okay. 

Now we are left with the stress balance okay. So in order to compute the stress balance what

is required is this operator okay. So let me explain a bit here. So we have stream function

exterior is and of course we have a U/2. Then stream function interior is. Now we compute on

each of them. Why? Because we need to compute the tangential stress. So for this we have to

compute this and then compute this. 

I am just sketching some process okay so that you feel confident. So this if you do what we

get so U/2 Sin Theta because Sin Theta is cancelling one. Then the derivative of that and for

this same thing we do okay. Then if you look at the next step we need is 1/r power 2 Sin

Theta. So, and for this okay. Then the next we need partial derivative with respect to okay. So

we are doing, so this will be r power 3 and here r power 2 4D2. 

Then final we have to multiply so this if you call some * we need r*. So that will be then here

okay. So once we have computed; let us say this is A, this is B. If you pay attention what we

need is A – Mu B is this okay. Now we have this temperature okay Ti. So what we are going

to compute? The stress balance. 
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So essentially we are looking for we are looking for A - Mu B = Ma okay. And we are on r =

a. So this is on r = a, or normalized r =1 okay. And we have T is continuous on r = a, and we

have a Theta derivative. So therefore, what exactly we are using is because the structure of TI

is very simple. So we compute from here exactly the same. So now what is Ti? Ti is so

therefore okay. 

So we have a functional dependence of Sin Theta on the right hand side and A, and B if you

see  we  have  functional  dependency  of  Sin  Theta.  So  simply  we  have  to  consider  the

coefficients and r is a. So we do that so once we do that we are going to get the following. So

U/2 okay, I hope you are following. U/2, so Sin Theta I am ignoring and we are on r = a. So

therefore, I am also not considering r. 4A1 – 2B1 - 2 – Mu B. 

So that will be then and this is equals. Because our condition is Ma times this therefore okay

we are on r = a. So now we are ready to determine the coefficient. 
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So let us take this you by U/2 to the right hand side okay. So we are taking A/2 to the right

hand side, so 4A1. But we have the relation please look at the relation that we have obtained.

A1 is this C2 is this D2 is this. So we are going to use it. So U/2 anyway we have taken the

other side, so 4A1 so that will be because A1 is –B1 plus minus okay. So then minus 2B1 -

Mu(C2), C2 also we have a relation okay. 

So we are using this. So please use it. You can get it quickly. This will be 2B1 + 3 for D2 also

we using the relation equals and U/2 we have taken other side. Therefore, 2/U okay. So now

this and this. This is - 6 B1 and this and this – 6. Similarly here, so this is. Now we can take

6B1 common. So -6B1 1 + Mu, then we can take here we can take -3 common okay. This is

equal to, so from here we can get so from here we can get.

Now in case if the surface tension is constant, so then we take Ma = zero. So then we get the

corresponding coefficient which is nothing but the clean drop in the sense where you have

only continuity of the tangential stresses case. So otherwise if you expect that surface tension

depends on temperature so then the corresponding Marangoni number and the ratio of the

thermal conductivities play a role.
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So with this we have determined B1. So once we have determined B1. 
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We have determined all the coefficients, so then drag can be calculated. Of course for this

again requires lot of algebra to compute normal stress okay, p has to be computed and the

normal stress, tangential stress. Then the drag is computed okay. So once we have the drag

what we consider is one can compute the corresponding thermo capillary drift? 

What do you mean by that? The force acting due to the hydrodynamic plus thermo capillary.

So that is reflected if you see your drag force this is due to the hydrodynamic drag and this is

due to the thermo capillary effects okay. So called Marangoni effects are also called thermo

capillary  effects  because  CT involves  Ma  and  the  thermal  conductivity.  If  your  surface

tension is constant then Ma is 0. 



So there is no thermo capillary drift only hydrodynamic drift okay. Further if you see if you

take Mu goes to infinity then you get a 6Pi Mu Ua. That is the strokes track. So all limiting

cases that is the reason in the previous lecture we did not discuss drag because once you

discuss drag here you can get the drag for simple viscous flow past a liquid sphere. Because

simply take Ma = 0 you get the corresponding drag okay. 
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Migration velocity  when the flow is  steady we find migration  velocity  in the absence of

gravity  forces  by  equating  the  net  forces  to  be  zero.  That  is  what  I  have  indicated.  So

therefore, we equate the net forces to be 0 and compute the migration velocity okay. So this is

of course used as a scalar. So this is should not have been there or this may be treated as a

vector. 

So this is the corresponding migration velocity okay. So I hope this gives some modeling

approach for droplets and in particular not only clean droplets where your surface tension is

driven  by  some  surface  activity.  So  here  we  mentioned  that  the  activities  due  to  the

temperature but in general it could be due to various types of surface activity. 

It could be due to some such a surfactant which is coated on the droplet, it could be due to

some electric potential etc. So the corresponding literature is very much available and with

this introduction I am sure you will be in a position to follow that. Thank you! 


