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Viscous flow past a spherical drop

Hello! So in the previous lectures we discussed about applications of arbitrary solutions of

stokes flows and then some applications like the mechanics of swimming microorganisms. So

now  justifying  the  title  of  this  course  that  is  ‘Modeling  transport  phenomena  of

microparticles’, we are going to discuss another application that is a ‘Modeling transport of

viscous drops’ okay. 

So typically  when you hear about the word viscous drops, you can as a layman you can

imagine several applications. In real life we come across viscous drops in variety of situations

right, like micro to macro level. So drops and bubbles these are sometimes, time and often

they are used one for the other and vice versa but there is some basic differences which one

can formally define okay. 

So when it comes to application like some gas bubbles in some soda okay, so that is like

some  gas  is  trapped  inside  a  volume  okay  and  external  there  is  another  fluid  right.  So

basically these two are immiscible.  So in such case that is called a bubble, so whereas if

suppose there is a liquid trapped in a volume so then it is a it is a drop so that is a basic

difference. So you can imagine drops mean you have a lot of examples in real life. 

So today we are going to discuss about transport mechanism of such viscous drop. Of course

to start with we have a spherical scenario okay and then how the corresponding transport can

be modelled. So in order to model typically we talk about spherical drop, let us say in another

fluid.  So  then  since  these  two  fluids  are  immiscible  so  we  have  to  know what  are  the

corresponding interface mechanism right. 

So we spend some time on discussing the corresponding interface mechanism okay. 
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So as I indicated bubble means gas or vapour trapped in a volume inside another immiscible

fluid  then  drop so  a  liquid  which  is  trapped  in  another  fluid  okay.  So there  are  several

examples. Then you see several applications where suspensions of drops or bubbles okay and

even in our most of the propelling systems rockets etcetera so where liquid fuel is used. 

So you come across the impact of drops and suspension of drop very much and these are also

used in various mixing technologies okay. So these are some other additional applications.

For example formation of uniform composites, that is where I said the mixing technology. So

to have a uniform compositor one has to have a fine mixing technology. So and there should

not be any deposit so they use some bubbles etc. and then finally when they burst so you get a

complete uniform texture okay. 

So these are some spraying systems, chemical reactors. So you can plenty one can give and

also these one can see some drop droplet phenomena when you have a motion of swimming

microorganisms or blood flow okay. 
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So most interesting where lot of applications are oil industry. So typically you can see oil in

water or water in oil okay. So this is the other scenario and sometimes these droplets have see

this is water okay oil in water. So this oil so you can see so there will be some deposits. So

these are the surfactant layers okay. So that means when you have a droplet you can just

visualise.

If  you  have  a  drop  in  an  immiscible  flow  so  then  if  you  put  some  like  contaminant

concentration something, immediately we will see some particles will go and accumulate on

the surface of that okay. So they form a surfactant mono layers right. So definitely they will

impact the migration of the drop okay. So that is the applications. 
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Now let us have a quick recall of the interface conditions in case of a fluid coming in contact

with the rigid body. So we discussed this is a kinematic condition where normal velocity is 0

if the assuming that the body is at rest okay. Similarly, this is the no slip condition so the

tangential velocity is a 0. Now we need to discuss similar conditions when you have a fluid

comes in contact with another immiscible fluid okay. 

(Refer Slide Time: 05:58)

So  in  this  scenario  since  there  is  no  mass  transfer  happening  across  because  both  are

immiscible, so there is no mass transfer across the interface. Therefore, the corresponding

normal velocity exterior is 0 and interior is 0 okay. So this is not a good notation. We should

have written two of them independently. 
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So suppose you have an interface where you have some exterior fluid okay with velocity ue,

interior let us say this is the velocity. And if this is the boundary, so then since there is no

mass transfer because this is of viscosity Mu i this is of viscosity Mu e. So then what we are

assuming is here ue dot n okay. So of course the corresponding directions of the n matters but

since we have homogeneous boundary condition  so that  is  immaterial  okay. So this  is  a

kinematic boundary condition for each of the fluid velocities okay. 

So  now  similar  to  the  dynamic  boundary  condition  what  would  be  the  condition  here

assuming the interface is a stationary okay. So dynamic boundary condition is intact. So since

you have a fluid motion taking inside so it  is  expected that  the corresponding tangential

velocities are continuous okay. So this analogous to the no slip condition at a rigid boundary.

So you may be questioning this a bit initially without accepting as it is. 

So how to justify in some sense. Suppose so you have fluid inside is also moving because it

has an interior velocity and then this fluid is also moving with an exterior velocity. Since the

flow is viscous this is very important for us, since the flow is viscous, so the fluid layer which

is close to the boundary. So we will have the velocity of this boundary okay and the fluid

layer which is adjacent so they will have the velocity of this.

And then these two have to be continuous because we assume that the interface is very thin

and there is  no mass  accumulation  at  this  stage.  So hence we get  t  equal,  so this  is  the

corresponding interface condition. Now since this is the viscous environment so are these the

boundary conditions? So no naturally we have to discuss about the corresponding stress okay.
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So let us consider such an interface with normal and the corresponding interior we have given

negative. So let us say the velocity is ui and the corresponding stress is indicate like this okay.

And the corresponding stress is this okay. So when you have such interface what happens to

the surface mechanism? So if you ask the question it is natural to think even without much of

physics we say okay.

Surface tension plays a vital role because the surface tension plays a role when you have

interface not within the domain right. So naturally, the stresses have to be balanced while

considering the surface tension effects okay. So that is the stress balance essentially tells. So

if  some balances  the stresses,  so what  you will  see is  the balance  is  something like this

tentatively. 
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So you have an area so where you are balancing the stresses okay. That means jump exterior

to interiors. This is a jump you can say exterior to interior plus also you have to balance the

surface tension forces okay, and this total will be 0. So this is the fluid stresses due to the

velocity and pressure whereas this is the corresponding forces due to the surface tension. So

if this is on an area this will be on a curve bonding the area.

So it is essentially something like this. If you have and let us say this is in 3-D okay, so and if

you take a small surface element okay then there will be a bounding curve C okay. So on this

you get the corresponding surface tension forces. So if one formally balances this, we get the

corresponding stress balance. So I am not giving you the formal proof because it involves a

lot of calculations okay. 

But one can refer any standard book on viscous drops so some of them will be including the

references. So one can get this derivation. So what it tells is for an arbitrary element one can

have the external stress minus the internal stress is balanced by essentially surface tension

force is a surface activity. Hence this gradient is having a special understanding. So this is the

surface gradient okay. 

So if it is a 3-D surface let us say and if you are on y equal to constant, this gradient is with

respect to xy. If you are on x equal to constant this gradient is with respect to yz, etc., okay.

And  the  curvature  also  affects  okay.  Curvature  will  also  influence  therefore  the  surface

tension and the corresponding interaction of the curvature so that  is this  okay. So if  you

decompose this normal stress is balanced by the surface tension times the curvature. 

And then tangentially is balanced by the surface force which is a strictly surface gradient of

the surface tension because it is a scalar okay. So if one assumes that there is no like surface

tension is a constant, it is not changing, then what you would have this will be 0. So one

would expect the continuity of the tangential stresses and in case of normal stress you get a

constant multiplied by the curvature which depends on the specific boundary at hand okay.

So this is additional tool that one has to consider when we have a fluid-fluid interface. 
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So now to proceed further this is related to the mean curvature H of the interface by this okay.

So this is very standard notation. Then normal stress can be expressed in this form and the

tangential stress can be expressed in this form okay. So now let us say it is a spherical so then

correspondingly  this  will  be simplified  okay to  2 by a  okay because  both the  r1 and r2

coincide. So you get the corresponding okay. 

So therefore, this is in summary we have kinematic condition, normal exterior is 0, normal

interior velocity is 0, tangential velocity is continues, then we have normal stress balance and

we have tangential jump condition we call it because there is it is not continuous there is a

jump. Of course here also normal stress there is a jump which depends on the curvature. So

these are the boundary conditions which are used. 

We will see some scenarios where the surface tension is also varying okay. But in this lecture

we assume that the surface tension is a constant okay. So now let us consider one problem

which is just an extension of for Stokes flow past a rigid sphere that we extend it to Stokes

flow past a drop okay, spherical drop. 
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So we are considering Stokes flow past a spherical drop. So you have a drop where you have

fluid exterior  with the  viscosity  Mue and density  Rho e and interior  fluid you have this

custom Mu i and the density Rho i. And we have a far-field ambient velocity. So once you

have a far-field ambient velocity in presence of the drop it gets disturbed. This flow gets

disturbed. So our aim is to compute the flow disturbance okay. So in this approach there are

two cases. 

One is you have an ambient flow then flow past a drop. On the other hand you can consider

you attach a moving frame to the drop, so then drop is moving with a velocity where you

have ambient zero velocity okay. So both are equivalent acceptor there is a shifting of the

frame takes place okay. So in any case so both of the solutions are equivalent okay. So as I

remarked, this is nothing but modification of the rigid sphere problem okay. 
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So let us say go for the assumptions drop is translating in another admissible fluid with a

given ambient velocity. There is no gravity and we are considering r, Theta, Phi, with origin

as the centre of the drop. Even though I have shown the frame like this we are assuming it is

at the centre of the order. Flow is incompressible and axisymmetric and inertia is neglected.

So essentially we are boiling down to stokes equations okay.

(Refer Slide Time: 17:02)

So we assume for r < a inside the drop we have stokes equations. R>a we have stock secure

equations and the superscripts denote flow exterior to the drop and interior to the drop. Now

since we have assumed axisymmetric, we introduce corresponding stream function and we

reduce the corresponding scalar equivalent equation outside-inside.
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So since  we have  already discussed a  stokes  flow past  a  rigid sphere,  so this  is  exactly

following the same methodology. One can get this. So basically we assume once we have a

eliminated pressure we get the stream function, what is the stream function equation. So we

adopt that okay and the corresponding separable solution in spherical polar coordinates is

also very much available. 

So for example we must refer the book by Happle and Burner okay which is listed in the

references okay. 
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So we move on to the general solution to start with. So you can see the general solution is

expressed in terms of something called Gegenbauer functions. So these are essentially these

are linear combinations of Legendre polynomials okay. So for separable solution. And the



corresponding methodology one should refer some books on PDE or Happle and Burner. So

here is Gn + Hn are Gegenbauer functions of first and second kind.  

But one may observe that Gegenbauer functions of second kind they are bounded okay with

respect to Theta. So due to the boundedness with respect to theta we neglect okay. We need

boundedness with respect to theta and these are to be neglected.  So the left over will be

bounded  solution  okay.  So  correspondingly  for  interior  we  adopt  some  coefficients  and

exterior we adopt some other coefficients. 

Because this is the general structure so let us call it for interior with primes and for exterior

no primes. So these are the general solution at this stage okay. 
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Now what are the boundary conditions since we are a spherical case, u dot n is nothing but

the radial component. So radial component of the exterior flow is zero, radial component of

the interior flow is zero, then tangential component is continuous. Which means here only the

theta  component  because  due  to  axisymmetry  there  is  no  Phi  component.  Then  the

corresponding shear stress; that is tangential stress is continuous okay. 

If you recall we had jump and the jump is nothing but the surface gradient of the surface

tension.  So now, here  when we are writing  this  we are  assuming that  surface tension  is

constant. It is not depending on any quantity.  For example, surface tension can vary with

temperature okay or surface tension can vary with concentration or a combination of both. So

in which case the surface gradient has to be there. 



But for the present problem we are considering surface tension is a constant, therefore, the

corresponding  substrate  gradient  is  0  therefore,  the  corresponding  tangential  stress  is

continuous okay. And we have far field conditions. So this is uniform flow along z direction.

So corresponding radial component and corresponding tangential component. You might be

wondering we did not use normal stress so far. 

So we did not use any of them we are simply stating so that is a remark. Normal stress

condition is not stated here so we will pay some attention to this why we have not stated here

okay. And this is for interior flow of the boundedness condition. We are not allowing any

similarities okay. 
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Now we have introduced stream function therefore it makes sense to get the corresponding

boundary conditions in terms of stream function. So that this is the normal velocity, tangential

velocity continuity and then tangential stress continuity on the boundary okay. Far field is

given by this corresponding far field condition. So corresponding to uniform flow this will be

the equivalent stream function okay. 

So that is as I indicated we are not commenting at this stage the normal stress balance under

the  boundedness  okay.  So  we go  for  the  corresponding  general  solution,  then  use  these

boundary conditions okay. If you recall for Stokes flow what we have done? Once we have a

far-field behaviour, then all the functional dependency of theta is controlled by the far field

behaviour.



So correspondingly no point in considering the other functional forms okay. So that means

you  have  a  complete  basis  but  we  know  that  for  solution  only  particular  solution  is

contributing.  So the remaining we are throwing because even if you consider and do the

algebra you get a homogeneous system which gives you a trivial solution okay. So hence it

makes sense to first impose the far field condition and then obtain restricted solution okay.
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So that is what we do. Since far field is behaving like Sin power 2 Theta, we assume each

interior and exterior is of this form. This we have done very much for the rigid sphere case.

Therefore, we have such structure okay for the interior and exterior. So from prime we have

to be consistent j i means interior e means exterior.  Now we use the far field condition then

we get De is 0 and Ce is -1/2. So how did we do this?
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So this we have shown earlier so we can discuss. So exterior Psi is given by Ae/r Ber Cer

power 2 so Der power 4 Sin power 2 Theta. But we have a far-field behaviour so this must go

to 1/2 U infinity r power 2 Sin power 2 Theta okay. So what we are doing? So if we take r

power 2 Sin power 2 Theta common, so this will be cube okay. Now far field has a functional

dependency like  this  so far  field  should behave like  this  that  means we want  this  to  be

bounded okay.

So in order as r goes to bounded as r goes to infinity. So r goes to infinity so these two go to

zero. They go to 0 as r goes to infinity okay. So then Ce if Ce is a 1/2U if Ce is 1/2U infinity,

then the flow goes to exactly what we are looking for. But this is the one which is making

unbounded. So therefore, this implies De is zero okay. So this gives you De is 0 and Ce is

-1/2 for U can be 1 here if your non dimensionalize. 

So simply we get C is half okay. So then interior solution we need a regularity okay. 
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So correspondingly for interior solution we consider Ai is 0, Bi is 0. Therefore, the reduced

stream functions exterior and interior are this. So we do not have U infinity because we are

working in normalized the situation non dimensionalized okay. Now rest of the boundary

condition what is the boundary condition? 
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Tangential stress balance so we have once we have this we use the tangential stress balance

okay. So we have to compute Dow Psi Dow r, then 1 over r power 2, then Dow by Dowr and

mind you so there is a coefficient viscosity Mue and this is Mu i. So therefore, the terms not

immediately cancel because you have they would not come up as a common because there is

a ratio of Mue and Mui involved. 



So this algebra can be done on this because you have only one two three four coefficients.

That is very straightforward okay. So we can determine these four coefficients. You can see

as I indicated Mu is involved in this coefficients which is the ratio of the viscosity. So that is

interior  to  the  exterior.  So  again  I  am  mentioning  this  algebra  is  very  straightforward.

Computing the tangential stress balance is very straightforward and nothing much. 

It just two partial derivatives on Psi okay. So you can do it very easily to realize that we get

this coefficient. So once we have this coefficients we have the corresponding stream function

exterior and interior. 
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Now this is the case of drop having viscosity Mu i and Mu e okay and we have Mu which is

ratio of Mu okay Mu e. So if you want to get the limiting case of this is a drop. If we want a

limiting case of rigid sphere then we go for interior should be highly viscous. That means Mu

i goes to infinity. In other words Mu goes to infinity. If you take this limit we can retrieve the

corresponding solution for the stokes flow past a rigid impermeable sphere okay.

So now you should ask the question still we did not use the normal stress balance okay and

we managed the solution  right.  So what  is  the scenario  here? Our assumption is  who is

keeping the drop spherical right? Surface tension is keeping the drop spherical right. So under

this assumption the normal stress balance is automatically satisfied okay. So if you deform

the surface so then the normal stress balance becomes an additional condition and using that

one can determine the corresponding deformation okay.



So this involves some algebra but I will just try to explain a bit so before that you can see this

is for a particular viscosity ratio streamlines are given. 
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So you can draw for various viscosity ratios and see how the streamlines behave to get some

physical insights okay. 
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So  as  indicator  normal  stress  balance  over  determines  the  system  if  one  assumes  the

sphericity of the drop. Whereas, if we assume that the drop is deforming then normal stress

balance can be used okay. So when I say that so this is spherical. 
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Now suppose something like that so this is some function of theta. So example says then we

have normal velocity condition, tangential velocity condition and tangential stress condition.

So on the spherical part, we have got the solution. We have determined the coefficients but

suppose if you assume the drop is deformed like this, where epsilon is the corresponding

deformation parametric okay. Then one can use normal stress balance and expand these okay.

How do we expand in terms of this r? We assume that epsilon is that is small perturbation

okay. Small perturbation it is slightly deformed so which means we consider terms up to

order epsilon square okay. So then how do we expand various polynomial solutions? 
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Suppose you have one hour r square, this is nothing but 1/a power 2(1+Episilon Cos Theta)

power 2. So this is nothing but 1/a power 2  (1-2Episilon Cos Theta + O(Epsilon power 2))



with the assumption that Epsilon is much smaller. Similarly suppose we have such this will

be 1 / a4 (1 - 4Episilon Cos Theta). So this is the case of a small deformation. So to balance

the normal stress we need the pressure. 
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So in terms of stream function from the momentum equations we can get this compact form

okay. So you can see this is the r momentum and this is the Theta momentum and we have

any way we have the corresponding stream function. So from that one can integrate to get the

corresponding pressures okay. So this one has to do the corresponding calculation.  Now once

you integrate the pressure, pressure is a unique up to a constant. 

So these are the corresponding constants okay. And this is viscosity ratio and this is expressed

in a dimensional form that is why you are seeing U okay. Now once we have we compute the

normal stress exterior and interior. So what is a normal stress expression? Ur okay. So we

have integrated the pressure and then we have velocity so one can compute the corresponding

normal stress, then balance the normal stress.

You can see why we are getting a 2 Sigma by r because we are talking about the sphere. So

therefore, the normal stress balance reduces to 2 Sigma by r and where r equals to A we have

this okay. 
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So as I indicated this we are expanding on this deformed sphere okay, deformed surface. We

have taken A = 1 essentially this minus this Mu times this equals to sigma by r where r is this.

So now as I explained, we go for such a small deformation then correspondingly equate terms

having similar functional dependency. So the constant term is equals to 2 sigma while sigma

is constant here. 

Then the corresponding coefficient of Cos Theta will lead to this relation. Which means we

have determined the corresponding shape parameter okay. So what we intend to do here is for

a small deformation like this one can determine the shape by balancing the normal stress

okay. So this is not very straightforward. I am sure you may not appreciate so much because

it is a lot of algebra involved so that would take some time. 

But it is doable it is very routine calculation. So we will try to give some relations in the

appendix so that you are comfortable in the following and then you can continue this algebra

okay. So if you do it then you will be ready to handle some research problems, so that is a

basic intention that I did not give you the routine calculations here.

If you do it and then arrive at these expressions you will appreciate and you will be ready to

solve some research problems okay. So this is the case of a spherical drop migrating. So when

we said here migrating, we can compute the corresponding migration velocity. So how do we

compute so we have to compute the drag forces acting on the drop the process is similar to

what we have done for our Stokes flow past a rigid sphere. 



So once we compute the drag force we balance the net forces to be 0.  Then we get the

corresponding migration velocity. So I hope you get some idea about migration of viscous

drop. Of course spherical in an ambient flow. And in the next lecture we try to consider the

case  where  you  have  surface  tension  depending  on  some  activity  like  temperature  or

concentration. Until then, thank you!


