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Lecture – 10
Hydrodynamics of Squeeze Flow

Hello! Welcome back. So in the last class we discussed about lubrication approximation. So

today we are going to discuss a similar application which is popularly known as a squeeze

flow. So as the word indicates I am sure you would have experienced a squeeze flow in a

variety  of applications  in  real  life.  So typically  squeeze flow has  applications  in  devices

where you have such configurations. 

(Refer Slide Time: 00:47)

So there is some material and then you apply some force so then it gets squeezed it and then

you get due to the corresponding flow you get the corresponding liquid like this okay. So

there are a lot of applications so in particular filters and then some industrial dampers and

where typically lubrication plays a vital role okay. 

So today we are  going to  discuss  about  the  squeeze  flow okay.  So as  the  configuration

indicates so we are going to consider such configuration where so we consider a Newtonian

flow within this okay. Of course this example I have taken from something non-Newtonian

flow but today we are going to discuss about Newtonian flow bounded between two circular

disk.



And then the lower disc will be stationary and the upper disk is exerted by some force okay.

So let us formally understand the problem. 

(Refer Slide Time: 02:06)

So the problem is we consider incompressible Newtonian fluid between two parallel disk of

radius R separated by a distance H and we are assuming that R is much larger than H and as

already indicated the upper disk is subjected to axial force. So typically when we say vertical

so it is positive direction since we are pressing the disc so it is a taken away and negative

okay. 

So this is negative direction and the lower disk is stationary and the flow is assumed to be

symmetrical in the azimuthal direction. So this is nothing but axisymmetry okay. 
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So let us look at the configuration.  So since we are discussing as two plates so these are

assumed to be circular but for configuration wise 0they are indicated like this okay. So we are

assuming  that  the  plates  are  located  at  z  equal  to  0  and  equal  to  H.  So  we  have  the

corresponding geometry here so this is r and then this z  okay. 

So with this configuration so this plate is stationary and then disk so this is a velocity is given

in this direction okay and we are assuming Stokes flow with viscosity Mu. So since we are

considering steady Stokes flow so we have corresponding equation of continuity and then

momentum balance.  So for  the  cylindrical  configuration  with  the  axisymmetry  we write

down the equations in component form okay. 

(Refer Slide Time: 03:52)

So this is the equation of continuity as you can see there is no v Theta term because of the

axis symmetry assumption. Now let us look at the r momentum so r momentum you can see

there are  no derivative terms with respect  to Theta that  is  again due to  the axisymmetry

assumption okay. So already we have discussed these equations in a some of our previous

lectures. 

So one can refer for the full system of Navier-stokes equations in cylindrical coordinates.

From  there  if  you  apply  access  symmetry  we  get  this  is  the  r  momentum  and  Theta

momentum this is redundant because all the variations with respect to Theta are 0. So we get

the corresponding u Theta is 0. So therefore we get this corresponding pressure derivative is

0.



So this immediately indicates that pressure is function of r and z only. And finally we are left

with the z momentum equation so which is given by this okay. So this is the basic assumption

so now if you see we have radial velocity and we have actual velocity. So we would like to

know for this configuration since we are assuming r is much larger than distance between the

plates disks so what kind of competition between vr and vz and which is more prevailing

compared to the other. 

So  this  one  has  to  analyze.  So this  is  possible  via  the  corresponding order  analysis.  So

correspondingly, we introduce some scaling arguments. 
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So we know that vertical velocity is of order V. So therefore we first normalize the axial

velocity with V and then radial for the time being let us say it is V* which we would like to

estimate and then R is radius of the disk and z is normalized by the distance between the

disks and pressure as usual which we have used okay. So now, let us consider our two terms

in the equation of continuity. 

So you can recall so this is one term and this is another term. So correspondingly if you see

this so you have an r there and the derivative so ultimately this will be of order V*/R okay.

And similarly this if you introduce this scaling, so this will be of order V/H okay. So now so

these are the two terms in our equation of continuity. So from this one can conclude that V* is

V times R/H and R is much larger than H. 



So this indicates that the radial velocity is substantial okay. So because R is a much larger

than H so this indicates that the radial  velocity scaling is substantial  okay. So that is our

conclusion. So radial velocity substantial, hence we assume to be function of r and z. So now

let us get some estimates on the axial velocity. So we have one can note because already we

have indicated here and so V is of order 1. 

So then you can see so this is finite okay. Because this is comparable. On the other hand if

you consider this, this is of order V/R and this is of this order. So now our assumption is R is

much larger. So therefore this goes to 0 okay. So that means the radial variations of the actual

velocity are almost negligible because R is much larger. So hence our conclusion of vr is

substantial has to be supported by some conclusion on vz. 

So that  is  nothing but  vz  is  function  of  z  and may be a  weak function  of  r  which  is  a

negligible  okay.  So  that  is  so  in  some  sense  the  corresponding  lubrication  kind  of

approximation  is  directly  reflected  in  this  fashion  okay.  So  we  go  with  vz  as  a  merely

function of z alone and try to proceed with the analysis okay.

So if you can visualize suppose you have two disks and then pressing. So you can visualize

so the flow gets like this so radial velocity has a lot of importance in this problem okay. So

that is what we have seen it mathematically okay. 
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So now under this assumption how the model gets reduced? So the above arguments this is

already  we  have  concluded  actual  velocity  is  function  of  z  alone.  So  then  from



incompressibility that is conservation of mass that is equation of continuity we can obtain

this. So this is a very straightforward.  So let me so we have the reduced conservation of

equation under axisymmetry. 

(Refer Slide Time: 10:04)

We have already seen this plus = 0 and then this vz is function of z, that already we have

seen. So this implies -r so this I can write it as because its function of z alone. So now we

integrate okay. So plus a function of z so this okay. But we need a boundedness condition. So

that is Vr is finite at r = 0. So this indicates so therefore what we get is simply.

So the incompressibility  condition has given a this  is  function of z.  So radial  velocity  is

linearly depending on the radial distance. So that is the inference from this relation  you are

getting.  So any case we are going to use this for further analysis. So that is what I have

indicated here so this is what the incompressibility assumption. So now we have to get the

corresponding momentum equations. 

So  again  here  it  is  very  easy  to  observe,  please  pay  attention  to  the  corresponding  r

momentum equation. So we have obtained vr is some constant that is function of z times r

okay. So therefore this is r in the numerator and r power 2. So this is 1 over r okay. Similarly

here whatever r is left with this derivative that is nullified. So then this interior is of order r

and again that is nullified so this is 1 over r and here 1 over r the constants remain. 

So  therefore  this  complete  combination  is  0.  It  is  very  easy  to  calculate  okay.  So

correspondingly vz is already we have seen its function of z. So therefore this term is also 0.



So that is what we have written here. So this is r momentum reduced to Dow p/ Dow r is this,

then on using this relation one can write okay. Then the corresponding z momentum equation

is a correspondingly given by this. 

So now let us say if you take derivative with respect to r, so then the right hand side will be 0

because vz is function of z alone right. So what we do we differentiate this with respect to r

and this with respect to z and write down here.

(Refer slide Time: 14:02)

So from the z momentum equation we get this and for r momentum equation we get this? So

in combining these two one can infer that the ODE for the vz is this. So this indicates the

velocity  structure  will  be  a  cubic  in  z.  So where  Alpha,  Beta,  Gamma,  Delta,  are  some

arbitrary constants that are to be determined. And once we have vz we can write down vr

using the relation that we have okay. 

So that means at this stage we have obtained the general structure of the velocity component

okay. So once we have so our next aim is naturally to compute the pressure because in most

of  the  squeeze  flows  see  the  velocity  whatever  is  applied  so  that  play  a  role  and

corresponding to that what is the pressure and then corresponding to the pressure what is the

force okay. 

Because most of the times the physical quantity that is of interest is force which is required to

estimate various physical mechanisms okay. So therefore, correspondingly what we do is we

first integrate for the pressure and then go for the computation of the force okay. 
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So this is again very straightforward okay. So this is again I can just make you understand. 

(Refer Slide Time 15:46)

So we have the r momentum equation which is reduced already so that is okay. And we have

vz structure here which is vz is written as Alpha z3 + Beta z power 2 + Gamma z + Delta

okay. So therefore if we use three times okay so what we are going to get? This will be

-3Alpha Mu r okay. So this one can just we have to compute third derivative substitute and

we get this okay. Similarly we have okay. 

So from here we can get Mu to be okay. So, this one can calculate very easily. So that is what

we have done then we need to integrate okay. So what I have done is Mu has been brought

okay. So we integrate this with respect to r so then you get a function of z and then you can



use this to evaluate that. So once you do that exercise you will get this. So this is again very

straightforward so we get the corresponding expression for pressure is this.

And this constant has to be evaluated okay. So typically the corresponding condition for the

pressure is it is taken. At the centre typically the pressure equal 0 and at the periphery some

pressure is given. So one can take some non-trivial PR at edge of the disk and then compute

or one can take zero pressure okay. So now we for simple calculation purposes we take H to

be 1 and then we are computing PR that is at the at the R edges okay.

So once we prescribe this pressure this C can be eliminated and we get the corresponding

expression okay. So again this is very simple calculation, okay because one has to substitute

this  condition  and  eliminate  C  and  then  substitute  it  back.  So  then  this  can  be  nicely

rearranged okay.  So we have now got the pressure but  however  if  you see we have the

velocity  expressions  which  contains  these  arbitrary  constants  and  we  have  obtained

expression for pressure in terms of these arbitrary constraints.

So  still  these  arbitrary  constants  are  to  be  determined  okay.  So  these  are  these  will  be

determined subject to the no-slip condition on the two disks. So that is the next task. 

(Refer Slide Time: 19:36)

So then no-slip back to z = H. So you have vertical velocity is - V because we are pushing

and then the radial velocity is 0. And at the bottom it is a stationary disc, therefore vz is 0 and

vr is 0. So then one can use these to determine the arbitral constraints so again this is very



trivial. So you should be able to solve and then match with these constants. So once we have

these constants we have the complete velocity determined okay. 

(Refer Slide Time: 20:12)

So we have the complete velocity determined right. So now as indicated so we have already

obtained the velocity and pressure. So then the next task is to get the force. So now typically

in a squeeze flows pressure play a vital role. So one can integrate the complete normal stress

to get the force or get the component of the force that is due to the pressure alone okay. So to

start with we would like to discuss the corresponding force due to pressure alone okay. 

(Refer Slide Time: 20:58)

So this is called lubrication force and this can be calculated. So we are computing between 0

to R and at H equals to 1 considering H equals to 1. So we are integrating the pressure the

corresponding areal element, then we have substituted p(r,1) okay that is computed. So then



one can see so there is a contribution due to the pressure constant that is provided at the edge

and then there is a component due to the pressure okay, hydrodynamic pressure. 

So correspondingly we have the value of Alpha. So once that is substituted we get these two

components okay. So this one if you take pr is 0 this component is not there. So typically this

is  termed  as  the  lubrication  force  okay.  So standard  expression  for  the  lubrication  force

between parallel discs is if you assume pr is 0, we get the force equals to this. But then if we

non-dimensionalize, so then we get the corresponding force as 3Pi/2(R/H) power 3 okay. 

So this is a competition between R and H so here we are assuming R is large, so therefore,

this is a substantial force as well. So as I already indicated, so if the normal stress component

is  integrated,  one  would  get  an  additional  component  here.  So  when  I  say  what  is  the

corresponding normal stress component? 
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What I am trying to say is, so if you integrate p + 2Mu dvr/dz okay, so this is a normal stress

component.  So if  you integrate  so from here we got two terms. So from here we get an

additional term okay. We get an additional term so this is normal stress component should be

think the dvr/dz or so this one has to check okay. So correspondingly, we get the additional

component okay. 

So  in  this  case  we  are  not  considering  this  we  have  only  integrated  the  pressure.  So

correspondingly we are getting two components okay. So this is one and this is the other one



okay. So with this we have got the velocity components, pressure and the force. So the next

interesting is to compute the stream lines. 
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So  we  fix  H  =  1  and  V =  1  just  for  the  calculation  purposes  and  then  try  to  get  the

corresponding stream function okay. So vz is given by this and vr is given by this where Psi

is a  steam function and when we take H =1 and V = 1, we get to the simplified expressions

for the velocity components. So then one can integrate this to get the stream function okay.

So the calculation is very straightforward so not explaining the integration. 

So you can try yourself and see that the corresponding stream function is this okay. So as you

can see so this is streamlines are with respect to the radial distance, they are quadratic okay.

So naturally one would be interested in seeing the corresponding contours okay. So how the

corresponding contours are behaving okay? So one can use some mathematica or Mapple.
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So this is a done in mathematica with a simple command of contour plot with the values

shown. So these are the Psi = -0.2, Psi = -0.6, Psi = -0.8, so on so forth. But we would like to

see what really happens at a closer look. So these are using Maple so these are drawn with

you can see much closer denser plot.  So you can see the radial  flow going up and then

towards the centre it is a more straight okay. 

So the  flow gets  radially  distribute  so you are  squeezing  it  and then  the  flow is  getting

distributed okay. So radially but the radial velocity is a very much substantial not only in

radial direction also along the axial direction. So there is a lot of deviation okay. So this is a

very important application in various lubrication equipments and I hope or you get an idea of

a squeeze flow. 

And then one can study advanced configurations like squeeze law of two immiscible flows or

like you have a soil above and then porous soil and then you are filtering something through a

porous pack.  So this  is  another  kind  of  configuration.  So these are  very much useful  in

various micro-fluidic environments. Thank you!


