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Hello welcome to the course on modeling transport phenomena of microparticles. So this is

done  by  two  professors  S.Bhattacharya  and  G.P.Raja  Sekhar,  both  Department  of

Mathematics IIT Kharagpur, Okay. So as the title suggests modelling transport phenomena of

microparticles, so what we would like to do in this course is we would like to run through

basic tools to understand the transport of microparticles. So when we say micro particles are

typically these are like viscous drops, soft colloids, microorganisms, or visit collides etc. 

Most of these you can see in various applications in viscous environment and sometimes in

addition to viscous environment  you will see some external  gradients like temperature or

concentration or sometimes electric field etc. So the basic aim of the course is to give you

some analytical tools and then now once that is done some computational tools okay.  So let

us see the module one. 

(Refer Slide Time: 01:28)

Module one is preliminary concepts fluid kinematics, mass conservation, and stress, so these

are the preliminary concepts, so when we say fluid kinematics, so typically when we start

with the fluid kinematics, one would try to understand the basic Continuum Hypothesis.
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So what is continuum hypothesis typically a textbook definition is one-to-one correspondence

between the matter and the space occupied by the same. So which means it is like this, so you

have an object so now I kept here, so there is a one-to-one correspondence between the space

occupied  by  the  matter  of  this,  suppose  I  move  it  so  then  again  there  is  a  one-to-one

correspondence, so there is it is completely continuum okay.

So  according  to  this,  for  example  any  fluid  property  like  density,  velocity,  pressure,

temperature, so they continuously depend on position and time. So it is once we have the

continuum hypothesis typically fluid motion is described with the help of two approaches,

one is  Eulerian approach and other is a Lagrangian approach, so what is the big difference

between these two. 

The Eulerian approach is like we are sitting on a particular position and then let us say we are

looking at it at that instant, whereas Lagrangian approach is like we are tracing the trajectory

okay. 
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So let us see in detail Eulerian coordinates, so typically we are using a small x bar x1, x2, x3

Cartesian frame. So here it is nothing but labeling points which means we are working in a

fixed laboratory frame, that means a position is fixed, so you are observing okay, who is

passing by, who is passing by this at a particular time, who is passing at different time okay,

so this is Eulerian approach okay, so a position is fixed and all particles pass through this at

different times that what we are observing. 

So accordingly, for example if you talk about velocity u bar x bar t this is nothing but fluid

velocity at this position, at this time okay. So now corresponding to this Eulerian coordinate

frame, what is the time derivative? So what we say is the position is fixed okay, so therefore

the Eulerian time derivative is defined as the rate of change with respect to time while x bar is

fixed okay. 
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So  now what  is  Lagrangian  coordinate  so  this  we  are  denoting  by  capital  X  bar  again

Cartesian frame and as I already indicated it is labeling fluid particles okay, so that means

you are labelling your particle and then you are observing okay. It is like we are at a far off

and then we are trying to see how a particle is moving okay. 

Something like that okay, so accordingly at t0, so this is a reference position vector at time t,

the position vector is expressed however you see in terms of the reference that means we are

labelling the fluid particle with this reference position and then we are tracing okay. So for

example if you take density, so this is explicitly in terms of the reference variable okay. 

So now what these are corresponding derivatives in the Lagrangian frame, so this is called

Lagrangian derivative or material derivative. So this is given this notation okay that means

there is something more to be understood about this which we will, so you will see here it is a

rate of change with respect to time with reference position fixed. 

So for example if you take the position vector expressed in terms of this reference variable,

so the Lagrangian derivative is the velocity but you can see the position vector is expressed in

terms of the reference variable okay. So what is the basic difference? 
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So in one approach we have fixed the frame okay and in Lagrangian, we have taken a particle

t0, so it is at some other time okay. So at some tk, so this is a trajectories each particle. So this

is a particle one, particle two, particle three, so we are tracing the trajectories this is the

Lagrange, so this approach you are observing sitting on that okay, then at that instant t. So

this is nothing but, so here we have reference attached, so for example this is kind of okay. So

this is the basic difference.
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So once you have such a description then definitely we would like to use back and forth

depending on the convenience. So the natural question to be asked is once you are given one

description, how do you get back? Okay. 



So  naturally  this  is  nothing  but  a  coordinate  transformation,  so  for  any  coordinate

transformation what you require is the corresponding Jacobian right, so that is what we are

defining.  So  as  per  the  continuum  hypothesis  there  exists  a  one-to-one  correspondence

between Lagrangian description and then earlier in description. So we assume that this map is

continuous so that the Jacobian is positive and bounded and this determinant is non-zero by

virtue of this. 

So  that  the  mapping  is  invertible  and  one  can  play  with  various  descriptions  okay.  So

correspondingly for any physical conditions you take it, and then model, and then let say you

try to play with the corresponding coordinate systems, then you need a some volume element

okay. So you see the volume element in Eulerian description is Jacobian times the volume

element, the Lagrangian and you can see this Jacobian at time t equal to zero must agree with

one because the position is agreeing with the reference okay. 

So that means there is no coordinate transformation right, so what is the use of this, use is like

you one can now change the co-ordinate systems Lagrangian to Eulerian and Eulerian to

Lagrangian using inverse transformation okay. So we will see the use of this very, very soon, 
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So this can be expressed in this form in a compact form this is the summation notation maybe

in some exercise I  will  include  a few problems on summation  notation,  so that  you can

comfortably follow okay. So this Jacobian can be expressed in this form where epsilon i, j, k



is a Levi-Civita symbol and the definition is hinted here, so this is one if i, j, k in cyclic order

-1 a cyclic 0 otherwise. So what does it mean? It means,

(Refer Slide Time: 09:48)

So you consider epsilon i, j, k, so suppose you take epsilon 1, 2, 3, since these are in cyclic

order of the value is 1. Similarly suppose 2, 3, 1, so they are in cyclic order okay. Suppose 1,

3, 2, so the cyclic order is disturbed, they are in a cyclic  order the value is -1, similarly

suppose if you take 1, 3, 3, so there is index repeated so value is 0 okay, so one can easily and

capture the Jacobian in terms of this okay. 

So this can be in exercise okay, this proof can be an exercise I will include.

(Refer Slide Time: 10:39)

So now once we have the corresponding Lagrangian and Eulerian derivatives what is the

relation okay. So as you can see any fluid property f, it is expressed in terms of the position



vector and time you can see this position vector is with the reference variable X bar expressed

in  terms  of  the  Lagrangian.  So  now therefore  the  Lagrangian  derivative  or  the  material

derivative  of  this  fluid  property is  nothing but  the local  rate  together  with following the

trajectory. So we would like to get the corresponding derivatives.
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So you have an f, which is X bar of this so Df by Dt is the local rate + the following the

particle so this is nothing but, following the particle okay. This is a local rate, so now this is

nothing  but  velocity,  so  which  we  will  see.  So  you  can,  so  in  Cartesian  frame,  so  the

summation I have expanded here so del f by del xi, del xi by del xt is expanded and you can

see this is a u bar so the entire thing can be expressed as this. 

So that means so we have the corresponding, sometimes called substantial derivative is given

by okay, so this is the very useful because this will indicate how a particular fluid property is

varying following the particle, so not only local time also the spatial trajectories okay. So that

is the advantage.

So once you have the convective derivative we have discussed Jacobian and then we have

convective derivative, so you have applied convective derivative on the Jacobian we get this,

and this one can do using simple algebra, so I would like to include this in exercise, I am sure

you will be able to do it okay right. 
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So we have now discussed how fluid motion can be described using Euler in Lagrangian

approach and then how any fluid property let it be velocity, density, or temperature how it

gets converted okay, so these variations we have discussed. So now we would like to derive

the mass conservation but before that we would require some tools okay. So let us see the

first tool namely Reynolds transportation theorem. 

So basically this indicates the variations of any fluid property or a fluid element and how it is

changing with time  okay.  So this  is  a  Reynolds  transport  theorem you can  see  we have

considered  a  fluid  element  at  time  t  equal  to  zero  bounded  by  volume  V  and  the

corresponding boundary is this, and this is the reference position vector and it is along a

trajectory it has moved and then this is the corresponding volume element at time t.

So we have indicated to the normal as well here, so now we would like to understand if there

is any fluid property f which is continuously differentiable how it gets converted and what is

the rate of change of that particular fluid property over this volume element okay. So you can

see once you have f the total amount is the integral of f over the volume element okay. This

one so you can see this is the Eulerian description.

So now you come back to Lagrangian description so this position vector is expressed with

reference to X bar and the corresponding Jacobian and the corresponding volume element

and the Lagrangian is given.
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So now we would like to discuss the rate of change of this total  amount accordingly we

compute the derivative,  so this  is nothing but we are in Lagrangian frame, so this  is the

corresponding Lagrangian derivative okay. So you see this  is nothing but the Lagrangian

derivative, convective derivative okay. So you expand this is a simple calculus so once you

do this we use Euler's identity here okay.

 

So one step is missing, so I would like to do this step here, so consider this okay and then we

use Euler's identity.
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So once you will Euler's identity we get see you have two terms Df by Dt  J + f DJ by Dt. So

we are using Euler's identity so fJ so this is nothing but Df by Dt + so we have taken the

Jacobian out further use the convective derivative. So this will be u dot grad f + f divergence



u J. And these two are combined so therefore we get okay; this is what we have written here

okay, so that what we have got okay.

So the total rate of the total amount is equals to this, so that means if you take any fluid

property  f  let  it  be  density  or  temperature  or  energy,  so  over  a  fluid  element  how it  is

changing is indicated by this okay. So this is very useful tool to derive conservation of mass

okay. So as I indicated, so we are very much interested in the next conservation of a mass

which is a first fundamental principle okay. 
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So according to this a material volume we always consists for example, if you do not have

source and sink so then accordingly what will happen, once you have a mass that stays so no

addition and the no deletion is taking place then total mass is conserved, so always consists of

same fluid particles okay. Therefore mass must be preserved so accordingly the rate is in this

is the mass and then rate is zero okay because the constants the derivative of that will be zero.

Now apply Reynolds transport theorem with f equals to the density okay. So you see this we

have the Reynolds transport theorem if you take f equals to Rho right density, so then this

will  be  the  mass  and  if  the  total  mass  is  comes  out  d  by  dt  of  this  is  0.  And  then

correspondingly f will be Rho we get the following okay, and you can see this holds for any

arbitrary volume element  so therefore the integrand is 0, which is a called a equation of

continuity, so which is a fundamental equation.
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So this is a general where you have density is varying for example let us say you have a 2D

so then the above equation will be Rho u, Rho v = 0, so correspondingly if you have three

dimensions or polar coordinates one can write a similar form okay. Right so now there is a

corollary to Reynolds transport theorem. 
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So let us say instead of f equals to Rho you take f equals to Rho f so then d by dt over a

volume element row f dV is we apply the Reynolds transport theorem and we expand one

term is coming here, one term from this coming here okay, similarly one term is here and one

term is here and this is nothing but the df by dt and this is nothing but equation of continuity,

which we have seen just now therefore this is zero and this is the convective derivative.



So therefore one useful identity we get is d by dt of Rho times any fluid property is Rho times

we convective derivative okay. So this is very useful identity which will use it while deriving

various other balance principles okay. 
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Okay so now incompressibility condition for an incompressible fluid so that means, we are

talking  about  density  variations  are  not  there  either  with  respect  to  space  or  time  so

correspondingly you have Rho is constant and then you get d Rho by dt = 0 and hence from

equation of continuity we get divergence of u is 0, so this is a typically equation of continuity

for incompressible.
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So it is okay so now we, so far we have discussed the corresponding fluid description and

then Reynolds or transportation theorem, which is, which gives you how a fluid property gets



convicted along, so once we do this we should move on to the corresponding momentum

balance because that is the next natural principle okay. But before we go to this we need to

understand about forces so when you say forces on a fluid element so these are expressed

captured in terms of stresses okay.

Typically  either  in  solid  mechanics  or  fluid  mechanics  forces  are  captured  in  terms  of

stresses,  okay  or  vice  versa  stress  is  captured  in  terms  of  course  so  we  would  like  to

understand the concept of stress so that we are in a position to move forward and get the

conservation of momentum okay. 
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So what is the stress vector, so you apply a force on an element okay, so that means let us say

you have any surface and then you apply force okay? So what  will  happen the force is

applied on a particular surface so then what is the stress we would like to capture, right so the

stress is defined as the force limiting of the force on a particular area, that means the area is

approaching to 0 and then the force acting on a particular surface element while the surface

element is approaching 0, so that is the stress okay. 

So accordingly you see we have taken a small element okay, which has a normal and then let

us say this is the stress which we are going to define, how we are going to define is force on a

particular surface element these are indicated with plus these are indicated with negative, so

action of these particles on these particles, across small surface element, so this is the force. 



Now how a stress is defined as I mentioned just now limiting value of the force our area

okay. Which means F bar by delta s is the stress vector okay, s as delta s approaching 0, okay,

so now once we say stress vector then that means this has components so those components

are defined in terms of something called stress tensor okay. 

So  let  us  understand  this  stress  tensor,  suppose  you  consider  surface  elements  whose

awkward normal’s pointing along i, j, k, okay. So then the stress factor ti indicates that we are

considering  a  surface  element  whose  outward  normal  is  pointing  along  i  then  it  can  be

resolved along the three components so one is t11, t12, t13, so here you see we are talking

about i. So let us say i is 1 so normal is along i where we are talking about stress on a surface

having normal along i.

So then this is the i component, j component, k component, similarly you consider a surface

element whose outward normal  pointing along j, so then here j is fixed, you can see then this

is the i component, j component, k component, similarly this is on a surface which is having

normal along k. So therefore three, we have three so then now this is X along I component, J

component and K component.
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So that means once you have a stress vector we have 11, 12, 13, 21, 22, 23, 31, 32, so this is

called stress tensor, so we have nine components, three dimensions so this is called stress

tensor okay. 
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So to be more precise this is what I indicated Tijs stress acting on a plane having normal

along i and in the direction j, so let us take an example, so this is the plane you can see

normal is along k okay, z axis along k, so therefore this is stress acting on a surface having

normal along z and x component normal along z, y component, normal along z, z component

okay.

So these are the corresponding stress components, so in Cartesian suppose if somebody is

using x, y, z.  So this can be written as xx, xy, xz, yx, yy, yz, zx, zy, zz  okay. So this is in

Cartesian  similarly  if  you  are  using  polar  correspondingly  one  can  write  down  the

corresponding components okay, so now the most interesting is what will be the stress xy and

yx that means we are considering this means what, stress acting on a surface whose normal is

along x axis and the component is along y.

And this one is stress acting on a surface whose normal is along y and the component is x, so

we will see in later modules there will be interesting the relation between these two, so which

will be useful okay, so understanding stress is a very much important because this will give

you the contact forces okay, so as I indicated once you have conservation of mass what will

be the next one is balancing momentum right.

So momentum means we are balancing the forces, so contact force are very much play a role

so in order to compute the contact forces we have to capture the stress and then integrate the

stresses okay, so we will discuss the next module the how the stress will be integrated to get

the momentum balance, okay thank you.


