
NPTEL

NPTEL ONLINE CERTIFICATION COURSE

Course

On

Introductory Course in Real Analysis

By

Prof. P. D. Srivastava

Department of Mathematics
IIT Kharagpur

Lecture 49: Boundness Theorem and
Max-Min Theorem

So this is in continuation of our previous lecture, we wanted to discuss the various properties of
the continuous functions. And as a consequence of that we see that if function is continuous 
over a closed bounded intervals then we have some results which is known as the Boundedness 
Theorem, max or minimum theorem, and the Bolzano’s theorem. And this gives you the also a 
criteria to find out an approximate solution for the root of the function, that a root location with 
the help of this, okay.

So let's see first what is the bounded, before going for the Boundedness theorem I will revise, 
recall the definition of a bounded function, bounded function, we define like this, 
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a function F from a set A to R, where A is a non-subset of R, non-empty subset of R is said to be
bounded on A if there exists a constant M greater than 0 such that the mod of F(x) is less than or
equal to M for all X belongs to N, it means as function is said to be bounded if the 
corresponding run set is a bounded set. 

So when we say that F is not bounded it means that is, so a function F from A to R is not 
bounded, it means we are unable to get such an M for this equity horse, or we can say that if 
given any M then a function F is said to be unbounded, then if given any M greater than 0 there 
exists a point X, bit depends on this bound M, XM point M belongs to A such that the value of 
the function at these points will be greater than the given number M, so whatever the number 
you choose you can always find a corresponding a point in it for which the functional value will
exceed that number M, then we say F is unbounded or is not bounded on the set M, okay, so 
this is we already discussed.

We wanted now the result the theorem which is known as the Boundedness theorem, the 
theorem states says let I be a closed bounded interval, and let F be a function from this closed 
bounded interval to R be a continuous function, be continuous on I, then this theorem says F is 
bounded on I, so every continuous function on a closed bounded interval will be a bounded 
function that's what it says.
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Proof, we will prove by contradiction, suppose F is not bounded on I, suppose F is not bounded 
on I, so by definition we cannot find an M such that the mod of F(x) is less than equal to M, so 
we can get then for any N belongs to natural number there is a number XN in the set A such that
the value of the function, absolute value of this functional value F(xn) will exceed by N, so 
corresponding to 1 we get 1 point X1 in A so that F(x1) is greater than 1, 2 we get F(x2) so we 
get a sequence of the points in A which will satisfy this condition F(xn) is greater than A, okay.
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But since I is bounded, since I which is giving to be the closed bounded interval is a bounded 
set, and all these sequences XN which you are getting satisfying the condition say 1, satisfying 
1 lies in I, lies in I, because these are all the sequences belonging to I, and I is a bounded set, so 
the sequence XN is a bounded sequence, because XN lies between A and B so that all the terms
of the sequence have a lower bound say, upper bound say B, it is a bounded sequence and we 
know by Bolzano–Weierstrass theorem every bounded sequence  has a convergent sequence, so
use the Bolzano–Weierstrass theorem, the Bolzano–Weierstrass theorem, so use Bolzano–
Weierstrass theorem this will give, which gives a convergent subsequence XNK of, say XNK of
this XN, convergence subsequence of XN F again that converges to the point X converges to a 
number X, to a number say X, because by definition XN is a bounded sequence,
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so Bolzano–Weierstrass theorem says by Bolzano–Weierstrass theorem we can get a 
subsequence which is convergent and converges to a number X. 

Now this X obviously belongs to I, why? Because since X is, XNK all these terms of the 
sequence XNK lies between A and B, this is a closed interval, I is closed interval, all the terms 
of the sequence lies between this, so the limit of this sequence XN cannot exceed between 
these, will always lie between these two bond, so since this is there, where I is a closed bounded
interval, so the limit point of this sequence XNK, over K this limit point obviously belongs to I,
okay. But this limit point is X, so that X belongs to I you know, so what we get is that a 
sequence XNK has a subsequence which is convergent and the limit point belongs to I.

Now F is given to be continuous, since F is given a continuous function over the interval I, and 
X is one of the point inside the I, so this implies F is continuous at X, so by Hahn–Banach 
theorem therefore this implies limit of XNK, when K tends to infinity is X will give you, will 
give F(xnk) limit of this as K tends to infinity is nothing, but what? F(x), F(x) okay, because by 
the convergence part, so what it shows? This implies the sequence F(xnk) this sequence is a 



convergent sequence, is a convergent sequence okay, and convergent sequence is always 
bounded, so it is bounded, but that gives a contradiction to our result, 
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because this sequence F(xn) is greater than N, so from here from 1 but from 1 what we get? We 
get mod of F(xnk) is greater than N of K which is greater than K of course, greater than K and 
this is true for all K belongs to N, all K belongs to N, so this continuous function is not bounded
on the closed bounded interval, 
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so this shows that function F, this over this sequence, so supposition that function is not 
bounded gives a contradiction, so this gives a contradiction of our second part, but from bigger 
this which contradicts 2, because here this shows this is unbounded, well we have already 
shown it is bounded, so it gives a contradiction, in contradiction is because of our assumption 
that our function F is not bounded on I, so this shows that function F is bounded on I, this 
implies F is bounded on I, that is closed interval, so this proves the result which is known as the
Boundedness theorem. 

Now in the Boundedness theorem we have assumed these conditions, what are the condition in 
the Boundedness theorem is, first condition is the interval on which the function is defined must
be closed and bounded, so this is one of the conditions which we have taken. 

Second condition which we have seen the function must be a continuous function on this, so 
interval is closed bounded, and function is continuous, then only we can say F is a bounded 
function only. If any one of the condition is relaxed that is if we take I to be a simply bounded 
interval not closed, or simply closed not bounded or function is not continuous then our 
conclusion that F is bounded on I cannot be drawn, in fact we will get a contradiction, we will 
get the example we get this function is unbounded when we relaxed anyone of the condition.

So let's see the examples, note the conditions of Boundedness theorem, the hypothesis of 
Boundedness theorem is each conditions, each condition is needed to justify or to get the 
function F to get a continuous function to be bounded on I, it be relaxed any one of the 
condition then we get the conclusion fails, the conclusion of the theorem fails, if any one of the 
hypothesis or anyone, if anyone of the conditions of Boundedness theorem is relaxed, for 
example suppose I take the function say function F(x) is suppose X, the interval I I’m choosing 
I as an interval is 0 to infinity, okay, and now this function is continuous function, it is a 
continuous function on this interval I, but I is not that is the function is closed but is not 
bounded, it is unbounded well though it is closed, because all the limits point of between 0, 1 
are inside it, so I is a closed interval but it's not bounded, okay, then what happens? The 
function is continuous throughout, but the bond for this function but function F(x) = X is an 
unbounded function, because as X increases the value of the F(x) keeps on increasing and 
interval is up to infinity, so it is without bond so it is unbounded therefore the conclusion fail.
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Second if suppose I take the same function G(x) let’s say 1/X this function and the interval I 
choose, I to be the interval say 0, 1, now this interval is not closed but bounded, function F(x) is
continuous over the interval 0, 1, because 0 is not included but we have seen this function is 
also unbounded, is unbounded as because as X tends to 0 the function G(x) will go to infinity 
unbounded, 
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so again the relaxing the condition is again not going to help that conclusion fails, then if I take 
the interval I as a closed interval which is a closed and bounded, okay, but now I am taking the 



function H(x) as 1/X, if X belongs to the interval say 0, 1, and 0, 1 if X is 0, I define this 
function, the function is continuous over the 0, 1 interval okay, but it is discontinuous at the 
point 0, clearly H is discontinuous at X = 0, so again the conditions is not satisfied and 
obviously clearly H is unbounded, when X approaches to 0 this is not a bounded function okay, 
1/X for this 0, 1, 
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and 0 when it's discontinuous and unbounded on C, okay, so this will be there, okay. So we can 
say that in Boundedness theorem is going to only be applicable when all the three conditions 
are taken in consideration. 

The next result which one to a maximum minimum theorem, the maximum minimum theorem, 
the theorem says let I be a closed bounded interval, and let F which is mapping from I to R be 
continuous on I, then F has an absolute maximum and an absolute minimum on I, this results.

Now we have already discuss the maximum, absolute maximum and absolute minimum in the 
last lecture, so proof we go, what is the absolute maximum mean? That if suppose a function is 
from A to R, 
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then F has a absolute maximum at a point, if there exists some point X star, such that F(x) star 
is greater than F(x) for all X, and minimum when F(x) in lower star is less than equal to F(x), so
that is the way we have introduced the maximum of this function. 

We will discuss after this proof, so suppose what we want is suppose A be a closed bounded 
interval, and function is given to be continuous then it will attains this maximum value as well 
as minimum value over the interval I, that is there exist some point we have the absolute 
maximum will be the attained, absolute minimum will be attained, so let's see the problem. 

So consider the set F(I) the set of those values F(x) where X belongs to I, means consider the 
range set of function F which is defined over I, now this then set the values of F(I) is clearly is 
bounded subset of R, and this follows from the previous, from Boundedness theorem, because 
Boundedness theorem we have seen if the I is a closed bounded interval, F is a continuous 
function then F(I), then F is a bounded on I, that is the range set will be a bounded set on I, so it
is a bounded subsets of all, this much be, 
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so once it is bounded subset we can talk about the upper bound and lower bound and supremum
of least upper bound and greatest lower bound. 

So let us suppose S star be the upper bound supremum value of the function F(I), and S lower 
star be the infimum value of the function F(I) that is least upper bound of the function F over 
the interval is suppose S star. 

Now what we want to, this S star and small s star exist, it means there exist some function what 
we wanted to prove, required to prove is that there exist, there exist points X upper star and X 
lower star in I such that the S star will coincide with the F(x star) and S lower star will coincide 
with F (x star) this we wanted to show. So first we will prove for this side and the other will 
follow in a similar way, okay. 
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So let us assume, so first to show that there exists an X star in I such that S star which is the 
supremum value of F(I) exist and equal to the value at this moment, there exists this we wanted 
to show, okay. 

Now since our X star, now since S star is the least upper bound of the function F(I), of the 
function F(x) for X belongs to I, when X belongs to I the least upper bound of this function is S 
star, so if I choose a number slightly lower than this it cannot behave as a least upper bound so 
the number then so the number S star -1/N this number is a slightly lower then, so it's not an 
upper bound for it, so is not an upper bound for this set or of the set F(I), it's not a bound, 
therefore they'll exist so we can check consequently there exists a number XN in I such that X 
star upper -1/N is less than S star, this S star -1/N less than F(xn) which is less than or equal to 
S tallest, S upper star, for all N belongs to capital N, because this is our upper bound, so when 
you take a number slightly lower than this then we can find a some number XN in I so that the 
functional value of XN will exceed by this number, and obviously it will remain less than equal 
to this because it is the least upper bound for this, okay.

Now this sequence number XN, but these sequence is XN satisfying 1, 1 are lying in the 
interval I which is say A, B which is a closed and bounded interval, closed unbounded, so by 
Bolzano Weierstrass theorem there is a subsequence say X days elements are X and say R 
belonging to of X, of course of X, X is a sequence XN of X that converges to some number X 
upper star say, okay. 

Now we wanted, in fact this number which we have got it this must be a point of A, B,  this we 
wanted to show first, so how to show is, since all the elements of this all again the elements of 
I, 
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so since the elements of X dash, that is XNR these are, they belongs to I which is closed and 
bounded interval, so just like a previous thing we can say, so just like previous theorem we have
seen that if the sequence of the point belongs to a closed and bounded open interval then limit 
point will also belongs to it, and since it is closed so limit point well, so it follows from this that
the limit point X star is also a point in I, okay. 
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Therefore F is continuous at I, therefore F is continuous at this point also because it is 
continuous throughout over the I, so once it is continuous so apply the definition Hahn–Banach 



definition, Hahn theorem says if a sequence converges to X star then F(xn) will also converge 
XR will also converge to F(x star), so by theorem limit of F(xnr) when R tends to infinity 
coincide with F(x star) because it's continuity, but by the first one, use the first one, from first 
what we get is S star -NR is less than F(xnr) which is less than or equal to S star, is it not? So 
this is true for all R belongs to N.

Now let R tends to infinity, so this limit is S star, this is S star, so by Squeeze theorem, the limit 
of this function F(xnr) as R tends to infinity will be equal to S star, but this limit is nothing but 
what? F(x star), so this implies there exist an X star belonging to I such that the supremum, 
because this is the supremum value of the function F(I) such that this F(x star) is the supremum 
of F(i) exist, and that proves the existence of X star. Similarly we can show for that there exists 
a X lower star in I such that X lower star is the infimum of F(I) 
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and this completes the proof for this much. 


