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Lecture - 3

Examples of countable and Uncountable sets



So in the previous lecture we have introduced the concept of countable sets and few examples we
have seen, the countable sets or uncountable sets. 
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Here we will continue with the counts and countable sets, with few more champions. So, the first
example let us see, set of all, set of all squares of natural numbers, natural numbers H number is
countable, is countable. Because the set of squares of natural number means, it is 1 4 9 16 and so
on. That is a set of those element X we are X is of the form n square and N is a natural number.
So this set has a one-to-one correspondence, if we define a mapping F from J to this sets a capital
A which Maps n to n square, that is f of n, is n square. Then it is easy to show that F is 1 1 and it
is a one-to-one correspondence so because Y 1 1 because FN 1 equal to FN 2 will implies, N 1
square minus n 2 square is 0, which implies n 1 minus n 2, into N 1 plus n 2, is 0. But n 1 plus n
2 cannot be 0. So this implies that N 1 is equal to n 2 so f is 1 therefore there is a. So there is a
one to one correspondence, correspondence, between the set a and set of positive integers, J. 1 to
N 0 hence a is countable. Similarly, the other sets are also like, set of all even, set of all even,
even positive integers or set of all odd  positive integers, integers or maybe the set of all prime,
set of all prime numbers, that is 2 3 5 7 11 and so on.  
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These are all countable sets, countable sets, which can be shown, by drawing a mapping, from
this set to the set of natural number, which is easy to just say even in positive integer F of n is
equal to, a mapping can be defined from J to this set, say B, such that F of n is equal to 2, then
this is a 1:1 mapping and similarly here are integers 2 n plus 1 and like this, similarly for the
primes also we can do for that, okay? So these are all natural sets, which are countable and it is
all subsets of a natural number, subset of their. So it means this I sold that an infinite set is a set
which has a one-to-one correspondence with its subsets also, okay? so that is why, we define like
that.
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 Then another  examples,  with this,  which we are doing, the set  of all  rational  numbers,  are
countable, set of or rational numbers set of all rational numbers is a countable set. And this also
we have discussed it, that when the positive let us take the different cases here, again. Suppose I
take set of all positive rational number rational numbers, that is it will be of the form P by Q we
are P and Q both are positive, okay?
 So basically, this n PQ are say integer, natural numbers.  So basically this is of the form if you
put it in the form of the sequence, it is of this type PQ sequence, where PQ are natural number
then. We can arrange in the form of the sequence we can arrange these numbers in the form of
sequence such that P plus Q is R, where R is 2 3 4 and so on. It means, we can put it in this work
one by one the first term so that P plus 1 is equal to 2 then we can put it as another say 1 by 2, 2
by 1 so the 3 and then we can go 1 by 3, 2 by 2, then 3 by 1 and continue this. So it has a one to
one correspondence, with the set of positive integer, which has a one-to-one correspondence with
the set of positive integer, one, two, three, four and so on. So it is a countable set. Then some
cases with the set of all negative, in all negative rational numbers in a similar way we can it is
also countable. Then so, it is this which countable is and this guy then set zero. Singleton set 0 is
a countable set, is a finite. So if I take the all-union, then set of rational number is, set of all
positive rational numbers, all negative rational numbers and including zero. So if we put it in this
form 0 1 minus 1, 1/2 minus ½, 2 minus 2 and continue this, plus, minus and all these things. 
Then this entire set, is countable, one-to-one correspondence with that and countable, we can get
this. Then also we were discussing about the points, whose coordinates are rational number.
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 There is another example that also we have seen. The set of points, set of points, in a plane, in a
plane, whose coordinates are rational numbers, rational numbers is countable. So set of points in
a plane, whose coordinates are rational numbers, that is the set is of this type, whose coordinates
are rational numbers. So we can say a B we are a and B both are rational numbers, Q Q is the set
of rational  numbers, because any point in the plane will be ordered pair and we get this point.
Now this is each Q, since Q is countable, Q is countable set and this set is a ordered pair of
whose elements are countable, then according to that result which we have seen that if s 1 s 2 SN
are countable, then the countable union of the countable, set is countable and accordingly we can
say, if there is an end stuff, each coordinates it belongs to a set, which is countable, then that
collection  of  the  end  stuff,  will  also  be  countable.  So  basically  the  double,  double  means
coordinate and where, these are rational. So this will be a countable set, is it not? So we can say
it is a countable. 
Actually based on this result is, that set of point, based since, you can say, the set of, a set of
points, a set of points in P dimension, this dimension is 2, in P dimension, dimensions, each
coordinate  of  which,   each  coordinate  of  which,  which  assumes  accountable,  assumes
accountable, assumes accountable, set of values, each countable. In fact this was shown already
because if suppose a set of p-dimensional is there, we prove by means of induction we have
shown, that if the set and this set, a1, a2, AP, where the AIS, all in a set a, which is countable,
then this  collection of set  is  also countable and this  we have shown, when I  is  1,  then this
coincide with the set a, which is countable. Then we have zoom for P min, say up to P minus 1
and for the P, when you write the point, it is of this form, called ordered pair. Then when you fix



up one value, other values keep on changing, so it is a countable set. So this we have already
discussed and this countable, okay? Now based on there,  another result,  which is, the set of
polynomials, set of polynomials that is a naught, X to the power n, plus a 1 xn, minus 1, plus a n
minus 1 X plus n this is the by, we have the coefficients, this set of all polynomials, where the
coefficients, are integral coefficient, with integral, with integral coefficients, ah it is countable, it
is countable. Means, this set of polynomials, where the coefficients are integers, are integers, is
countable.
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 Now you see that there is a one-to-one correspondence between the set of polynomials and this
set of peeta pills, since there is, a one to one correspondence, correspondence, with the set of
points, correspondence, between the polynomial, a not X to the power n, a 1, X n minus 1, plus
n, let us be P X P X to the N to the tuples, a naught, a 1, a 2, n. n plus 1 tuples. This one means a
corresponding to each polynomial, we can get this tuples and if this tuple is known, we can
construct a polynomial of degree n. Do there is a one-to-one correspondence between these two.
But what are the coordinate? But the coordinates of this, they are integers.  Integer values and
this integer is a countable set, which is countable. So this collection of the tuples, is countable
set. Because these integers and this collection of the tuples, will be countable, so this is countable
and  there  is  a  one-to-one  correspondence  between  the  elements  of  this  set  to  this  so  this



collection will also be countable. So this shows that set is countable. So set of polynomials is
countable, of degree and is countable, it is okay? Then algebraic numbers, the set of all algebraic
numbers, numbers is countable. What is the algebraic number? The Algebraic number X, it is a
solution of an algebraic equation. The, an algebraic number X, an algebraic umber X, is the
solution of, of an algebraic equation, of the form, a naught, X to the power, a 1, X n minus 1
,plus n equal to 0. Where the coefficients a naught, a 1, a 2, n, these are all integers. So this is the
solution a number X we satisfy this equation will be an algebraic number or corresponding to a
solution of this equation will be an algebraic numbers.
 Now because if we remove this zero, just I've take, then this is a polynomial of degree N and the
coefficients are integers. So according to the previous result, if the coefficients are integers, then
collection of all such polynomials, will be a countable set. So, once the polynomial, when we put
it equal to zero, you are getting algebraic equation. So the roots of this algebraic equation will be
at the most n. So these n roots which will satisfy this equation. So each equation will have the
roots  and  since  this  equation  this  collection  of  the  polynomial  is  countable,  therefore  the
corresponding roots will are set of all algebraic numbers, which are the roots of this equation will
be countable.
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 So this we can say, like this we can write like this, since every polynomial, every polynomial
equated to zero, equated to zero, all has only a finite number of route, number of routes and only
a  finite  number  routes.  Therefore  the  set  of  all  algebraic  numbers,  therefore  the  set  of  all
algebraic numbers, set of all algebraic numbers, forms a countable set, countable sets of finite
sets countable set of finite sets because these are solutions are finite so it forms a form finite set
finite so it is countable, and is consequently countable and hence is countable hence is countable,



consequently countable, consequently countable, that is what. Because this polynomial, when
you find the roots of this polynomial, you are getting a finite roots. 
May be at the most n so basically each equation correspond to a roots so we can just say that this
equation had the roots say alpha 1, alpha 2, alpha N ,say alpha 1, alpha 2 ,alpha P, where the P
may be less than or equal to n. So this equation will correspond to this. So the collection of all
such equation means, collection of all such elements, but these are finite which is countable,
okay? and then collection  <(19:29)>  is also countable. So this set will be a countable set, okay?
Okay, then the algebraic numbers ,once you get then all the transcendental numbers, becomes the
uncountable. So let us see the few examples for the uncountable sets. 

(Refer Slide Time: 19:56)

First example which is, say very important is,  the real set of all real  number, set  of all  real
numbers in the interval of an interval 0 1, is not countable. It is not countable. So what the
concept is, that all the infinite sets, need not be countable. So this is one of the example, where
the set of all real numbers, these are finite and infinite sets, infinite real numbers lying between 0
and 1, but this set is not countable. The reason is like this. 
We assume suppose the set is countable, suppose the set of all real numbers, suppose the set of
all real numbers, in the open interval 0 1, is countable. So once it is countable, we can arrange in
the form of sequence, so we can arrange them in the form of sequence, each and we can arrange
the elements of the set in the form of sequence. Say suppose, say X 1, X 2, xn and so on, because
they are infinite number, so we get a sequence, in finite sequence. Okay, now each exercise,
these are reals, in the interval zero, 1. So we can write down the decimal expansion of X. So each
element  ,each  X I,  will  have  decimal  or  can  be  expressed  in  a  decimal  expansion,  decimal



expansion, will have a decimal, can be expressed will have a decimal X or can be expressed can
be expressed by means o,f  can be expressed in  terms of the decimal  expansion,  in  decimal
expansion. So let us suppose, the xn is having the decimal expansion as, 0 point, a 1 n, a 2 n, a 3
n, a n N and so on. We are, what is a? We are these coordinates, we have the a h, this a h and this
a h, are any one of the integer r, any one of the digits 0 1 2 up to 9. A terminating we assume is, a
terminating,  terminating  decimal,  being  being  determined  decimal  being  supposed  to  end,
supposed to end, with a continuation of zeros, zeros, means. When the terminate suppose it is
terminate here then rest we would write 0 0 0 0 like that. So it is a network. 
Okay, now with the help of this let us construct a new number, so now we construct on number,
alpha H follows. Alpha I am writing the decimal expansion of alpha H, zero point alpha 1, alpha
2, alpha 3, alpha N and so on. Where such that, the Alpha n, is nothing but, a n n plus 1. Except,
except that a n is 0, alpha N is 0, alpha n is 0, when a n n is either 8 or 9. In order to avoid, the
possibility of, recurring 9 in it. This is done in order to avoid, in order to avoid the possibility, in
order to avoid the possibility, of possibility, possibility of a recurring nine, nine, okay? in alpha,
this we are doing. Now we claim, that this point alpha so constructed, differs from each any term,
x1, x2, xn ,of the set, of the points in the 0 1. Why at least at one place. Suppose I take X 1, then
X 1 here is, a11 in the first place, a1 1. Well the in alpha, the first point is alpha 1 and alpha 1 is
what? a11 plus 1. So basically whatever the first point is, first decimal place is there, we are
replacing, this by, plus 1, next digit, the digit will be say instead of this, we can write the 7 – 8, 6
- 7 and so on. Except, on whenever it is 8 or 9, then we can write this to be 0, that's all. So for
this is 8, then we get 9, so we put it alpha 1 to be 0. Similarly when 2 X 2, the second decimal
place in X 2, is a 2 n, but second decimal place of alpha, is alpha 2, which is a 2 2, plus 1. So,
again 1 is added here. 
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So clearly we will see except so this number, this number alpha is different from, is different
from, any one of the number, one of the number, any one of the numbers, xn, xn for it is different
from it is different from X 1, from X 1, in at least, at least the first digit, first digit, it is different
from X 2, from X 2, in at least, at least, the second digit and so on. 
So this way, so, but, alpha is what? Alpha is a new decimal expansion, we have the positive this
side is 0, means all the terms are less than 1, lying between 0 & 1, so it is. But alpha is a  real
number, lying in the interval 0 1 and since we have assumed 0 1 the set of all real numbers in 0 1
is countable, so it can be arranged in the form of the sequence, that we are, but this alpha does
not fall in any one of the and does not coincide with any one of these xn. It means that our
assumption is wrong because if it is countable then alpha must be one of the accents but this is
not true so that source that our assumption is wrong, so contradict our assumption. Hence zero
one,  set  of  all  points,  hence  the  set  of  all  points,  all  real  numbers  in  the  interval  0  1,  is
uncountable, it is not countable, and that's proof so okay? Now if we take say any interval, the
set of real numbers in any interval, a B is not countable. Because if I make the function t minus
a, over B minus a, this is our F T.  Then it will transfer the function, this mapping will transfer
the interval a B into the interval 0 1, okay? And this is a, one, one transformation, it is a 1:1
mapping. So in this interval is uncountable. So set of all points in this interval is set of all reals,
in  this  interval  is  uncountable.  So  in  this  also  set  of  all  real  numbers  in  this  interval  isn't
countable. 
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And then if we extend it, then we say important result is that, is the set of the continuum is not
countable, the continuum is not countable, continuum means set of all real numbers of  entire
real line is not countable, entire line is not countable, that's what it is. As a corollary of this we
can prove one thing,  
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The  set  of  irrational  numbers,  irrational  numbers,  in  any  interval,  in  any  interval,  is  not
countable.  And the solution is  very, because a interval  a  B,  a B,  contains  both rational  and
irrational points, any rational real numbers, reals.  
So rationals are countable, this we have seen. This is uncountable; therefore this implies that set
of all rational, irrational numbers, irrational numbers, in the interval a B is not countable. And
same  way  we  can  also  write  the  scholarly,  the  set  of  transcendental  number,  the  set  of
transcendental number, transcendental which are not algebraic number, transcendental number,
in any are in any interval, in any interval is not countable. Because the reason is, if we remove
the set of all algebraic numbers, from this, then we obtained a an algebraic number, which is
countable, we can get the transcendental left out. Because the reason, if we remove, if we remove
the set of all, set of algebraic, set of algebraic numbers, which is countable, which is countable,
from the any interval a B, then, then the compliment set of transcendental is non countable is
uncountable  then  compliment  of  it  then  complement,  then  the  remaining  one,  which  is
transcendental number will be not countable and that is what okay? So there are few examples
we have seen, now few more we will continue, when we go for the concepts of, like, some dense
set, then perfect sets, etcetera, then we will go for the few more examples, where the countability
or uncountability of the set is, will be considered. 


